|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""A Classification head layer which is common used with sequence encoders.""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
|
|
from __future__ import print_function |
|
|
|
import tensorflow as tf |
|
|
|
from official.modeling import tf_utils |
|
|
|
|
|
class ClassificationHead(tf.keras.layers.Layer): |
|
"""Pooling head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, |
|
inner_dim, |
|
num_classes, |
|
cls_token_idx=0, |
|
activation="tanh", |
|
dropout_rate=0.0, |
|
initializer="glorot_uniform", |
|
**kwargs): |
|
"""Initializes the `ClassificationHead`. |
|
|
|
Args: |
|
inner_dim: The dimensionality of inner projection layer. |
|
num_classes: Number of output classes. |
|
cls_token_idx: The index inside the sequence to pool. |
|
activation: Dense layer activation. |
|
dropout_rate: Dropout probability. |
|
initializer: Initializer for dense layer kernels. |
|
**kwargs: Keyword arguments. |
|
""" |
|
super(ClassificationHead, self).__init__(**kwargs) |
|
self.dropout_rate = dropout_rate |
|
self.inner_dim = inner_dim |
|
self.num_classes = num_classes |
|
self.activation = tf_utils.get_activation(activation) |
|
self.initializer = tf.keras.initializers.get(initializer) |
|
self.cls_token_idx = cls_token_idx |
|
|
|
self.dense = tf.keras.layers.Dense( |
|
units=inner_dim, |
|
activation=self.activation, |
|
kernel_initializer=self.initializer, |
|
name="pooler_dense") |
|
self.dropout = tf.keras.layers.Dropout(rate=self.dropout_rate) |
|
self.out_proj = tf.keras.layers.Dense( |
|
units=num_classes, kernel_initializer=self.initializer, name="logits") |
|
|
|
def call(self, features): |
|
x = features[:, self.cls_token_idx, :] |
|
x = self.dense(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
def get_config(self): |
|
config = { |
|
"dropout_rate": self.dropout_rate, |
|
"num_classes": self.num_classes, |
|
"inner_dim": self.inner_dim, |
|
"activation": tf.keras.activations.serialize(self.activation), |
|
"initializer": tf.keras.initializers.serialize(self.initializer), |
|
} |
|
config.update(super(ClassificationHead, self).get_config()) |
|
return config |
|
|
|
@classmethod |
|
def from_config(cls, config, custom_objects=None): |
|
return cls(**config) |
|
|
|
@property |
|
def checkpoint_items(self): |
|
return {self.dense.name: self.dense} |
|
|