|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Functions and classes related to optimization (weight updates).""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import re |
|
|
|
from absl import logging |
|
import gin |
|
import tensorflow as tf |
|
import tensorflow_addons.optimizers as tfa_optimizers |
|
|
|
|
|
class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule): |
|
"""Applies a warmup schedule on a given learning rate decay schedule.""" |
|
|
|
def __init__(self, |
|
initial_learning_rate, |
|
decay_schedule_fn, |
|
warmup_steps, |
|
power=1.0, |
|
name=None): |
|
super(WarmUp, self).__init__() |
|
self.initial_learning_rate = initial_learning_rate |
|
self.warmup_steps = warmup_steps |
|
self.power = power |
|
self.decay_schedule_fn = decay_schedule_fn |
|
self.name = name |
|
|
|
def __call__(self, step): |
|
with tf.name_scope(self.name or 'WarmUp') as name: |
|
|
|
|
|
global_step_float = tf.cast(step, tf.float32) |
|
warmup_steps_float = tf.cast(self.warmup_steps, tf.float32) |
|
warmup_percent_done = global_step_float / warmup_steps_float |
|
warmup_learning_rate = ( |
|
self.initial_learning_rate * |
|
tf.math.pow(warmup_percent_done, self.power)) |
|
return tf.cond( |
|
global_step_float < warmup_steps_float, |
|
lambda: warmup_learning_rate, |
|
lambda: self.decay_schedule_fn(step), |
|
name=name) |
|
|
|
def get_config(self): |
|
return { |
|
'initial_learning_rate': self.initial_learning_rate, |
|
'decay_schedule_fn': self.decay_schedule_fn, |
|
'warmup_steps': self.warmup_steps, |
|
'power': self.power, |
|
'name': self.name |
|
} |
|
|
|
|
|
@gin.configurable |
|
def create_optimizer(init_lr, |
|
num_train_steps, |
|
num_warmup_steps, |
|
end_lr=0.0, |
|
optimizer_type='adamw'): |
|
"""Creates an optimizer with learning rate schedule.""" |
|
|
|
lr_schedule = tf.keras.optimizers.schedules.PolynomialDecay( |
|
initial_learning_rate=init_lr, |
|
decay_steps=num_train_steps, |
|
end_learning_rate=end_lr) |
|
if num_warmup_steps: |
|
lr_schedule = WarmUp( |
|
initial_learning_rate=init_lr, |
|
decay_schedule_fn=lr_schedule, |
|
warmup_steps=num_warmup_steps) |
|
|
|
if optimizer_type == 'adamw': |
|
logging.info('using Adamw optimizer') |
|
optimizer = AdamWeightDecay( |
|
learning_rate=lr_schedule, |
|
weight_decay_rate=0.01, |
|
beta_1=0.9, |
|
beta_2=0.999, |
|
epsilon=1e-6, |
|
exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias']) |
|
elif optimizer_type == 'lamb': |
|
logging.info('using Lamb optimizer') |
|
optimizer = tfa_optimizers.LAMB( |
|
learning_rate=lr_schedule, |
|
weight_decay_rate=0.01, |
|
beta_1=0.9, |
|
beta_2=0.999, |
|
epsilon=1e-6, |
|
exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias']) |
|
else: |
|
raise ValueError('Unsupported optimizer type: ', optimizer_type) |
|
|
|
return optimizer |
|
|
|
|
|
class AdamWeightDecay(tf.keras.optimizers.Adam): |
|
"""Adam enables L2 weight decay and clip_by_global_norm on gradients. |
|
|
|
Just adding the square of the weights to the loss function is *not* the |
|
correct way of using L2 regularization/weight decay with Adam, since that will |
|
interact with the m and v parameters in strange ways. |
|
|
|
Instead we want ot decay the weights in a manner that doesn't interact with |
|
the m/v parameters. This is equivalent to adding the square of the weights to |
|
the loss with plain (non-momentum) SGD. |
|
""" |
|
|
|
def __init__(self, |
|
learning_rate=0.001, |
|
beta_1=0.9, |
|
beta_2=0.999, |
|
epsilon=1e-7, |
|
amsgrad=False, |
|
weight_decay_rate=0.0, |
|
include_in_weight_decay=None, |
|
exclude_from_weight_decay=None, |
|
name='AdamWeightDecay', |
|
**kwargs): |
|
super(AdamWeightDecay, self).__init__(learning_rate, beta_1, beta_2, |
|
epsilon, amsgrad, name, **kwargs) |
|
self.weight_decay_rate = weight_decay_rate |
|
self._include_in_weight_decay = include_in_weight_decay |
|
self._exclude_from_weight_decay = exclude_from_weight_decay |
|
|
|
@classmethod |
|
def from_config(cls, config): |
|
"""Creates an optimizer from its config with WarmUp custom object.""" |
|
custom_objects = {'WarmUp': WarmUp} |
|
return super(AdamWeightDecay, cls).from_config( |
|
config, custom_objects=custom_objects) |
|
|
|
def _prepare_local(self, var_device, var_dtype, apply_state): |
|
super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype, |
|
apply_state) |
|
apply_state[(var_device, var_dtype)]['weight_decay_rate'] = tf.constant( |
|
self.weight_decay_rate, name='adam_weight_decay_rate') |
|
|
|
def _decay_weights_op(self, var, learning_rate, apply_state): |
|
do_decay = self._do_use_weight_decay(var.name) |
|
if do_decay: |
|
return var.assign_sub( |
|
learning_rate * var * |
|
apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'], |
|
use_locking=self._use_locking) |
|
return tf.no_op() |
|
|
|
def apply_gradients(self, |
|
grads_and_vars, |
|
name=None, |
|
experimental_aggregate_gradients=True): |
|
grads, tvars = list(zip(*grads_and_vars)) |
|
if experimental_aggregate_gradients: |
|
|
|
|
|
|
|
|
|
|
|
(grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0) |
|
return super(AdamWeightDecay, self).apply_gradients( |
|
zip(grads, tvars), |
|
name=name, |
|
experimental_aggregate_gradients=experimental_aggregate_gradients) |
|
|
|
def _get_lr(self, var_device, var_dtype, apply_state): |
|
"""Retrieves the learning rate with the given state.""" |
|
if apply_state is None: |
|
return self._decayed_lr_t[var_dtype], {} |
|
|
|
apply_state = apply_state or {} |
|
coefficients = apply_state.get((var_device, var_dtype)) |
|
if coefficients is None: |
|
coefficients = self._fallback_apply_state(var_device, var_dtype) |
|
apply_state[(var_device, var_dtype)] = coefficients |
|
|
|
return coefficients['lr_t'], dict(apply_state=apply_state) |
|
|
|
def _resource_apply_dense(self, grad, var, apply_state=None): |
|
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) |
|
decay = self._decay_weights_op(var, lr_t, apply_state) |
|
with tf.control_dependencies([decay]): |
|
return super(AdamWeightDecay, |
|
self)._resource_apply_dense(grad, var, **kwargs) |
|
|
|
def _resource_apply_sparse(self, grad, var, indices, apply_state=None): |
|
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) |
|
decay = self._decay_weights_op(var, lr_t, apply_state) |
|
with tf.control_dependencies([decay]): |
|
return super(AdamWeightDecay, |
|
self)._resource_apply_sparse(grad, var, indices, **kwargs) |
|
|
|
def get_config(self): |
|
config = super(AdamWeightDecay, self).get_config() |
|
config.update({ |
|
'weight_decay_rate': self.weight_decay_rate, |
|
}) |
|
return config |
|
|
|
def _do_use_weight_decay(self, param_name): |
|
"""Whether to use L2 weight decay for `param_name`.""" |
|
if self.weight_decay_rate == 0: |
|
return False |
|
|
|
if self._include_in_weight_decay: |
|
for r in self._include_in_weight_decay: |
|
if re.search(r, param_name) is not None: |
|
return True |
|
|
|
if self._exclude_from_weight_decay: |
|
for r in self._exclude_from_weight_decay: |
|
if re.search(r, param_name) is not None: |
|
return False |
|
return True |
|
|