|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for official.nlp.tasks.question_answering.""" |
|
import functools |
|
import os |
|
import tensorflow as tf |
|
|
|
from official.nlp.bert import configs |
|
from official.nlp.bert import export_tfhub |
|
from official.nlp.configs import bert |
|
from official.nlp.configs import encoders |
|
from official.nlp.tasks import question_answering |
|
|
|
|
|
class QuestionAnsweringTaskTest(tf.test.TestCase): |
|
|
|
def setUp(self): |
|
super(QuestionAnsweringTaskTest, self).setUp() |
|
self._encoder_config = encoders.TransformerEncoderConfig( |
|
vocab_size=30522, num_layers=1) |
|
self._train_data_config = bert.QADataConfig( |
|
input_path="dummy", seq_length=128, global_batch_size=1) |
|
|
|
def _run_task(self, config): |
|
task = question_answering.QuestionAnsweringTask(config) |
|
model = task.build_model() |
|
metrics = task.build_metrics() |
|
|
|
strategy = tf.distribute.get_strategy() |
|
dataset = strategy.experimental_distribute_datasets_from_function( |
|
functools.partial(task.build_inputs, config.train_data)) |
|
|
|
iterator = iter(dataset) |
|
optimizer = tf.keras.optimizers.SGD(lr=0.1) |
|
task.train_step(next(iterator), model, optimizer, metrics=metrics) |
|
task.validation_step(next(iterator), model, metrics=metrics) |
|
|
|
def test_task(self): |
|
|
|
pretrain_cfg = bert.BertPretrainerConfig( |
|
encoder=self._encoder_config, |
|
num_masked_tokens=20, |
|
cls_heads=[ |
|
bert.ClsHeadConfig( |
|
inner_dim=10, num_classes=3, name="next_sentence") |
|
]) |
|
pretrain_model = bert.instantiate_bertpretrainer_from_cfg(pretrain_cfg) |
|
ckpt = tf.train.Checkpoint( |
|
model=pretrain_model, **pretrain_model.checkpoint_items) |
|
saved_path = ckpt.save(self.get_temp_dir()) |
|
|
|
config = question_answering.QuestionAnsweringConfig( |
|
init_checkpoint=saved_path, |
|
network=self._encoder_config, |
|
train_data=self._train_data_config) |
|
task = question_answering.QuestionAnsweringTask(config) |
|
model = task.build_model() |
|
metrics = task.build_metrics() |
|
dataset = task.build_inputs(config.train_data) |
|
|
|
iterator = iter(dataset) |
|
optimizer = tf.keras.optimizers.SGD(lr=0.1) |
|
task.train_step(next(iterator), model, optimizer, metrics=metrics) |
|
task.validation_step(next(iterator), model, metrics=metrics) |
|
task.initialize(model) |
|
|
|
def test_task_with_fit(self): |
|
config = question_answering.QuestionAnsweringConfig( |
|
network=self._encoder_config, |
|
train_data=self._train_data_config) |
|
task = question_answering.QuestionAnsweringTask(config) |
|
model = task.build_model() |
|
model = task.compile_model( |
|
model, |
|
optimizer=tf.keras.optimizers.SGD(lr=0.1), |
|
train_step=task.train_step, |
|
metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy")]) |
|
dataset = task.build_inputs(config.train_data) |
|
logs = model.fit(dataset, epochs=1, steps_per_epoch=2) |
|
self.assertIn("loss", logs.history) |
|
self.assertIn("start_positions_accuracy", logs.history) |
|
self.assertIn("end_positions_accuracy", logs.history) |
|
|
|
def _export_bert_tfhub(self): |
|
bert_config = configs.BertConfig( |
|
vocab_size=30522, |
|
hidden_size=16, |
|
intermediate_size=32, |
|
max_position_embeddings=128, |
|
num_attention_heads=2, |
|
num_hidden_layers=1) |
|
_, encoder = export_tfhub.create_bert_model(bert_config) |
|
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint") |
|
checkpoint = tf.train.Checkpoint(model=encoder) |
|
checkpoint.save(os.path.join(model_checkpoint_dir, "test")) |
|
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir) |
|
|
|
vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt") |
|
with tf.io.gfile.GFile(vocab_file, "w") as f: |
|
f.write("dummy content") |
|
|
|
hub_destination = os.path.join(self.get_temp_dir(), "hub") |
|
export_tfhub.export_bert_tfhub(bert_config, model_checkpoint_path, |
|
hub_destination, vocab_file) |
|
return hub_destination |
|
|
|
def test_task_with_hub(self): |
|
hub_module_url = self._export_bert_tfhub() |
|
config = question_answering.QuestionAnsweringConfig( |
|
hub_module_url=hub_module_url, |
|
network=self._encoder_config, |
|
train_data=self._train_data_config) |
|
self._run_task(config) |
|
|
|
|
|
if __name__ == "__main__": |
|
tf.test.main() |
|
|