|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for official.nlp.tasks.sentence_prediction.""" |
|
import functools |
|
import os |
|
|
|
from absl.testing import parameterized |
|
import tensorflow as tf |
|
|
|
from official.nlp.bert import configs |
|
from official.nlp.bert import export_tfhub |
|
from official.nlp.configs import bert |
|
from official.nlp.configs import encoders |
|
from official.nlp.tasks import sentence_prediction |
|
|
|
|
|
class SentencePredictionTaskTest(tf.test.TestCase, parameterized.TestCase): |
|
|
|
def setUp(self): |
|
super(SentencePredictionTaskTest, self).setUp() |
|
self._train_data_config = bert.SentencePredictionDataConfig( |
|
input_path="dummy", seq_length=128, global_batch_size=1) |
|
|
|
def get_network_config(self, num_classes): |
|
return bert.BertPretrainerConfig( |
|
encoder=encoders.TransformerEncoderConfig( |
|
vocab_size=30522, num_layers=1), |
|
num_masked_tokens=0, |
|
cls_heads=[ |
|
bert.ClsHeadConfig( |
|
inner_dim=10, |
|
num_classes=num_classes, |
|
name="sentence_prediction") |
|
]) |
|
|
|
def _run_task(self, config): |
|
task = sentence_prediction.SentencePredictionTask(config) |
|
model = task.build_model() |
|
metrics = task.build_metrics() |
|
|
|
strategy = tf.distribute.get_strategy() |
|
dataset = strategy.experimental_distribute_datasets_from_function( |
|
functools.partial(task.build_inputs, config.train_data)) |
|
|
|
iterator = iter(dataset) |
|
optimizer = tf.keras.optimizers.SGD(lr=0.1) |
|
task.train_step(next(iterator), model, optimizer, metrics=metrics) |
|
task.validation_step(next(iterator), model, metrics=metrics) |
|
|
|
def test_task(self): |
|
config = sentence_prediction.SentencePredictionConfig( |
|
init_checkpoint=self.get_temp_dir(), |
|
network=self.get_network_config(2), |
|
train_data=self._train_data_config) |
|
task = sentence_prediction.SentencePredictionTask(config) |
|
model = task.build_model() |
|
metrics = task.build_metrics() |
|
dataset = task.build_inputs(config.train_data) |
|
|
|
iterator = iter(dataset) |
|
optimizer = tf.keras.optimizers.SGD(lr=0.1) |
|
task.train_step(next(iterator), model, optimizer, metrics=metrics) |
|
task.validation_step(next(iterator), model, metrics=metrics) |
|
|
|
|
|
pretrain_cfg = bert.BertPretrainerConfig( |
|
encoder=encoders.TransformerEncoderConfig( |
|
vocab_size=30522, num_layers=1), |
|
num_masked_tokens=20, |
|
cls_heads=[ |
|
bert.ClsHeadConfig( |
|
inner_dim=10, num_classes=3, name="next_sentence") |
|
]) |
|
pretrain_model = bert.instantiate_bertpretrainer_from_cfg(pretrain_cfg) |
|
ckpt = tf.train.Checkpoint( |
|
model=pretrain_model, **pretrain_model.checkpoint_items) |
|
ckpt.save(config.init_checkpoint) |
|
task.initialize(model) |
|
|
|
@parameterized.parameters(("matthews_corrcoef", 2), |
|
("pearson_spearman_corr", 1)) |
|
def test_np_metrics(self, metric_type, num_classes): |
|
config = sentence_prediction.SentencePredictionConfig( |
|
metric_type=metric_type, |
|
init_checkpoint=self.get_temp_dir(), |
|
network=self.get_network_config(num_classes), |
|
train_data=self._train_data_config) |
|
task = sentence_prediction.SentencePredictionTask(config) |
|
model = task.build_model() |
|
dataset = task.build_inputs(config.train_data) |
|
|
|
iterator = iter(dataset) |
|
strategy = tf.distribute.get_strategy() |
|
distributed_outputs = strategy.run( |
|
functools.partial(task.validation_step, model=model), |
|
args=(next(iterator),)) |
|
outputs = tf.nest.map_structure(strategy.experimental_local_results, |
|
distributed_outputs) |
|
aggregated = task.aggregate_logs(step_outputs=outputs) |
|
aggregated = task.aggregate_logs(state=aggregated, step_outputs=outputs) |
|
self.assertIn(metric_type, task.reduce_aggregated_logs(aggregated)) |
|
|
|
def test_task_with_fit(self): |
|
config = sentence_prediction.SentencePredictionConfig( |
|
network=self.get_network_config(2), train_data=self._train_data_config) |
|
task = sentence_prediction.SentencePredictionTask(config) |
|
model = task.build_model() |
|
model = task.compile_model( |
|
model, |
|
optimizer=tf.keras.optimizers.SGD(lr=0.1), |
|
train_step=task.train_step, |
|
metrics=task.build_metrics()) |
|
dataset = task.build_inputs(config.train_data) |
|
logs = model.fit(dataset, epochs=1, steps_per_epoch=2) |
|
self.assertIn("loss", logs.history) |
|
|
|
def _export_bert_tfhub(self): |
|
bert_config = configs.BertConfig( |
|
vocab_size=30522, |
|
hidden_size=16, |
|
intermediate_size=32, |
|
max_position_embeddings=128, |
|
num_attention_heads=2, |
|
num_hidden_layers=1) |
|
_, encoder = export_tfhub.create_bert_model(bert_config) |
|
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint") |
|
checkpoint = tf.train.Checkpoint(model=encoder) |
|
checkpoint.save(os.path.join(model_checkpoint_dir, "test")) |
|
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir) |
|
|
|
vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt") |
|
with tf.io.gfile.GFile(vocab_file, "w") as f: |
|
f.write("dummy content") |
|
|
|
hub_destination = os.path.join(self.get_temp_dir(), "hub") |
|
export_tfhub.export_bert_tfhub(bert_config, model_checkpoint_path, |
|
hub_destination, vocab_file) |
|
return hub_destination |
|
|
|
def test_task_with_hub(self): |
|
hub_module_url = self._export_bert_tfhub() |
|
config = sentence_prediction.SentencePredictionConfig( |
|
hub_module_url=hub_module_url, |
|
network=self.get_network_config(2), |
|
train_data=self._train_data_config) |
|
self._run_task(config) |
|
|
|
|
|
if __name__ == "__main__": |
|
tf.test.main() |
|
|