|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Transformer model helper methods.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import math |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
|
|
|
|
_NEG_INF_FP32 = -1e9 |
|
_NEG_INF_FP16 = np.finfo(np.float16).min |
|
|
|
|
|
def get_position_encoding( |
|
length, hidden_size, min_timescale=1.0, max_timescale=1.0e4): |
|
"""Return positional encoding. |
|
|
|
Calculates the position encoding as a mix of sine and cosine functions with |
|
geometrically increasing wavelengths. |
|
Defined and formulized in Attention is All You Need, section 3.5. |
|
|
|
Args: |
|
length: Sequence length. |
|
hidden_size: Size of the |
|
min_timescale: Minimum scale that will be applied at each position |
|
max_timescale: Maximum scale that will be applied at each position |
|
|
|
Returns: |
|
Tensor with shape [length, hidden_size] |
|
""" |
|
|
|
|
|
|
|
position = tf.cast(tf.range(length), tf.float32) |
|
num_timescales = hidden_size // 2 |
|
log_timescale_increment = ( |
|
math.log(float(max_timescale) / float(min_timescale)) / |
|
(tf.cast(num_timescales, tf.float32) - 1)) |
|
inv_timescales = min_timescale * tf.exp( |
|
tf.cast(tf.range(num_timescales), tf.float32) * -log_timescale_increment) |
|
scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0) |
|
signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) |
|
return signal |
|
|
|
|
|
def get_decoder_self_attention_bias(length, dtype=tf.float32): |
|
"""Calculate bias for decoder that maintains model's autoregressive property. |
|
|
|
Creates a tensor that masks out locations that correspond to illegal |
|
connections, so prediction at position i cannot draw information from future |
|
positions. |
|
|
|
Args: |
|
length: int length of sequences in batch. |
|
dtype: The dtype of the return value. |
|
|
|
Returns: |
|
float tensor of shape [1, 1, length, length] |
|
""" |
|
neg_inf = _NEG_INF_FP16 if dtype == tf.float16 else _NEG_INF_FP32 |
|
with tf.name_scope("decoder_self_attention_bias"): |
|
valid_locs = tf.linalg.band_part(tf.ones([length, length], dtype=dtype), |
|
-1, 0) |
|
valid_locs = tf.reshape(valid_locs, [1, 1, length, length]) |
|
decoder_bias = neg_inf * (1.0 - valid_locs) |
|
return decoder_bias |
|
|
|
|
|
def get_padding(x, padding_value=0, dtype=tf.float32): |
|
"""Return float tensor representing the padding values in x. |
|
|
|
Args: |
|
x: int tensor with any shape |
|
padding_value: int which represents padded values in input |
|
dtype: The dtype of the return value. |
|
|
|
Returns: |
|
float tensor with same shape as x containing values 0 or 1. |
|
0 -> non-padding, 1 -> padding |
|
""" |
|
with tf.name_scope("padding"): |
|
return tf.cast(tf.equal(x, padding_value), dtype) |
|
|
|
|
|
def get_padding_bias(x, padding_value=0, dtype=tf.float32): |
|
"""Calculate bias tensor from padding values in tensor. |
|
|
|
Bias tensor that is added to the pre-softmax multi-headed attention logits, |
|
which has shape [batch_size, num_heads, length, length]. The tensor is zero at |
|
non-padding locations, and -1e9 (negative infinity) at padding locations. |
|
|
|
Args: |
|
x: int tensor with shape [batch_size, length] |
|
padding_value: int which represents padded values in input |
|
dtype: The dtype of the return value |
|
|
|
Returns: |
|
Attention bias tensor of shape [batch_size, 1, 1, length]. |
|
""" |
|
with tf.name_scope("attention_bias"): |
|
padding = get_padding(x, padding_value, dtype) |
|
attention_bias = padding * _NEG_INF_FP32 |
|
attention_bias = tf.expand_dims( |
|
tf.expand_dims(attention_bias, axis=1), axis=1) |
|
return attention_bias |
|
|