|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Common flags used in XLNet model.""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
|
|
from __future__ import print_function |
|
|
|
from absl import flags |
|
|
|
flags.DEFINE_string("master", default=None, help="master") |
|
flags.DEFINE_string( |
|
"tpu", |
|
default=None, |
|
help="The Cloud TPU to use for training. This should be " |
|
"either the name used when creating the Cloud TPU, or a " |
|
"url like grpc://ip.address.of.tpu:8470.") |
|
flags.DEFINE_bool( |
|
"use_tpu", default=True, help="Use TPUs rather than plain CPUs.") |
|
flags.DEFINE_string("tpu_topology", "2x2", help="TPU topology.") |
|
flags.DEFINE_integer( |
|
"num_core_per_host", default=8, help="number of cores per host") |
|
|
|
flags.DEFINE_string("model_dir", default=None, help="Estimator model_dir.") |
|
flags.DEFINE_string( |
|
"init_checkpoint", |
|
default=None, |
|
help="Checkpoint path for initializing the model.") |
|
flags.DEFINE_bool( |
|
"init_from_transformerxl", |
|
default=False, |
|
help="Init from a transformerxl model checkpoint. Otherwise, init from the " |
|
"entire model checkpoint.") |
|
|
|
|
|
flags.DEFINE_float("learning_rate", default=1e-4, help="Maximum learning rate.") |
|
flags.DEFINE_float("clip", default=1.0, help="Gradient clipping value.") |
|
flags.DEFINE_float("weight_decay_rate", default=0.0, help="Weight decay rate.") |
|
|
|
|
|
flags.DEFINE_integer( |
|
"warmup_steps", default=0, help="Number of steps for linear lr warmup.") |
|
flags.DEFINE_float("adam_epsilon", default=1e-8, help="Adam epsilon.") |
|
flags.DEFINE_float( |
|
"lr_layer_decay_rate", |
|
default=1.0, |
|
help="Top layer: lr[L] = FLAGS.learning_rate." |
|
"Lower layers: lr[l-1] = lr[l] * lr_layer_decay_rate.") |
|
flags.DEFINE_float( |
|
"min_lr_ratio", default=0.0, help="Minimum ratio learning rate.") |
|
|
|
|
|
flags.DEFINE_integer( |
|
"train_batch_size", |
|
default=16, |
|
help="Size of the train batch across all hosts.") |
|
flags.DEFINE_integer( |
|
"train_steps", default=100000, help="Total number of training steps.") |
|
flags.DEFINE_integer( |
|
"iterations", default=1000, help="Number of iterations per repeat loop.") |
|
|
|
|
|
flags.DEFINE_integer( |
|
"seq_len", default=0, help="Sequence length for pretraining.") |
|
flags.DEFINE_integer( |
|
"reuse_len", |
|
default=0, |
|
help="How many tokens to be reused in the next batch. " |
|
"Could be half of `seq_len`.") |
|
flags.DEFINE_bool("uncased", False, help="Use uncased inputs or not.") |
|
flags.DEFINE_bool( |
|
"bi_data", |
|
default=False, |
|
help="Use bidirectional data streams, " |
|
"i.e., forward & backward.") |
|
flags.DEFINE_integer("n_token", 32000, help="Vocab size") |
|
|
|
|
|
flags.DEFINE_integer("mem_len", default=0, help="Number of steps to cache") |
|
flags.DEFINE_bool("same_length", default=False, help="Same length attention") |
|
flags.DEFINE_integer("clamp_len", default=-1, help="Clamp length") |
|
|
|
flags.DEFINE_integer("n_layer", default=6, help="Number of layers.") |
|
flags.DEFINE_integer("d_model", default=32, help="Dimension of the model.") |
|
flags.DEFINE_integer("d_embed", default=32, help="Dimension of the embeddings.") |
|
flags.DEFINE_integer("n_head", default=4, help="Number of attention heads.") |
|
flags.DEFINE_integer( |
|
"d_head", default=8, help="Dimension of each attention head.") |
|
flags.DEFINE_integer( |
|
"d_inner", |
|
default=32, |
|
help="Dimension of inner hidden size in positionwise " |
|
"feed-forward.") |
|
flags.DEFINE_float("dropout", default=0.1, help="Dropout rate.") |
|
flags.DEFINE_float("dropout_att", default=0.1, help="Attention dropout rate.") |
|
flags.DEFINE_bool("untie_r", default=False, help="Untie r_w_bias and r_r_bias") |
|
flags.DEFINE_string( |
|
"ff_activation", |
|
default="relu", |
|
help="Activation type used in position-wise feed-forward.") |
|
flags.DEFINE_string( |
|
"strategy_type", |
|
default="tpu", |
|
help="Activation type used in position-wise feed-forward.") |
|
flags.DEFINE_bool("use_bfloat16", False, help="Whether to use bfloat16.") |
|
|
|
|
|
flags.DEFINE_enum( |
|
"init_method", |
|
default="normal", |
|
enum_values=["normal", "uniform"], |
|
help="Initialization method.") |
|
flags.DEFINE_float( |
|
"init_std", default=0.02, help="Initialization std when init is normal.") |
|
flags.DEFINE_float( |
|
"init_range", default=0.1, help="Initialization std when init is uniform.") |
|
|
|
flags.DEFINE_integer( |
|
"test_data_size", default=12048, help="Number of test data samples.") |
|
flags.DEFINE_string( |
|
"train_tfrecord_path", |
|
default=None, |
|
help="Path to preprocessed training set tfrecord.") |
|
flags.DEFINE_string( |
|
"test_tfrecord_path", |
|
default=None, |
|
help="Path to preprocessed test set tfrecord.") |
|
flags.DEFINE_integer( |
|
"test_batch_size", |
|
default=16, |
|
help="Size of the test batch across all hosts.") |
|
flags.DEFINE_integer( |
|
"save_steps", default=1000, help="Number of steps for saving checkpoint.") |
|
FLAGS = flags.FLAGS |
|
|