|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Utilities used in SQUAD task.""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
|
|
from __future__ import print_function |
|
|
|
import collections |
|
import gc |
|
import json |
|
import math |
|
import os |
|
import pickle |
|
import re |
|
import string |
|
|
|
from absl import logging |
|
import numpy as np |
|
import six |
|
import tensorflow as tf |
|
|
|
from official.nlp.xlnet import data_utils |
|
from official.nlp.xlnet import preprocess_utils |
|
|
|
SPIECE_UNDERLINE = u"▁" |
|
|
|
|
|
class InputFeatures(object): |
|
"""A single set of features of data.""" |
|
|
|
def __init__(self, |
|
unique_id, |
|
example_index, |
|
doc_span_index, |
|
tok_start_to_orig_index, |
|
tok_end_to_orig_index, |
|
token_is_max_context, |
|
input_ids, |
|
input_mask, |
|
p_mask, |
|
segment_ids, |
|
paragraph_len, |
|
cls_index, |
|
start_position=None, |
|
end_position=None, |
|
is_impossible=None): |
|
self.unique_id = unique_id |
|
self.example_index = example_index |
|
self.doc_span_index = doc_span_index |
|
self.tok_start_to_orig_index = tok_start_to_orig_index |
|
self.tok_end_to_orig_index = tok_end_to_orig_index |
|
self.token_is_max_context = token_is_max_context |
|
self.input_ids = input_ids |
|
self.input_mask = input_mask |
|
self.p_mask = p_mask |
|
self.segment_ids = segment_ids |
|
self.paragraph_len = paragraph_len |
|
self.cls_index = cls_index |
|
self.start_position = start_position |
|
self.end_position = end_position |
|
self.is_impossible = is_impossible |
|
|
|
|
|
def make_qid_to_has_ans(dataset): |
|
qid_to_has_ans = {} |
|
for article in dataset: |
|
for p in article["paragraphs"]: |
|
for qa in p["qas"]: |
|
qid_to_has_ans[qa["id"]] = bool(qa["answers"]) |
|
return qid_to_has_ans |
|
|
|
|
|
def get_raw_scores(dataset, preds): |
|
"""Gets exact scores and f1 scores.""" |
|
exact_scores = {} |
|
f1_scores = {} |
|
for article in dataset: |
|
for p in article["paragraphs"]: |
|
for qa in p["qas"]: |
|
qid = qa["id"] |
|
gold_answers = [ |
|
a["text"] for a in qa["answers"] if normalize_answer(a["text"]) |
|
] |
|
if not gold_answers: |
|
|
|
gold_answers = [""] |
|
if qid not in preds: |
|
print("Missing prediction for %s" % qid) |
|
continue |
|
a_pred = preds[qid] |
|
|
|
exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers) |
|
f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers) |
|
return exact_scores, f1_scores |
|
|
|
|
|
def normalize_answer(s): |
|
"""Lower text and remove punctuation, articles and extra whitespace.""" |
|
|
|
def remove_articles(text): |
|
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) |
|
return re.sub(regex, " ", text) |
|
|
|
def white_space_fix(text): |
|
return " ".join(text.split()) |
|
|
|
def remove_punc(text): |
|
exclude = set(string.punctuation) |
|
return "".join(ch for ch in text if ch not in exclude) |
|
|
|
def lower(text): |
|
return text.lower() |
|
|
|
return white_space_fix(remove_articles(remove_punc(lower(s)))) |
|
|
|
|
|
def compute_exact(a_gold, a_pred): |
|
return int(normalize_answer(a_gold) == normalize_answer(a_pred)) |
|
|
|
|
|
def get_tokens(s): |
|
if not s: |
|
return [] |
|
return normalize_answer(s).split() |
|
|
|
|
|
def compute_f1(a_gold, a_pred): |
|
"""Computes f1 score.""" |
|
gold_toks = get_tokens(a_gold) |
|
pred_toks = get_tokens(a_pred) |
|
common = collections.Counter(gold_toks) & collections.Counter(pred_toks) |
|
num_same = sum(common.values()) |
|
|
|
if len(gold_toks) == 0 or len(pred_toks) == 0: |
|
|
|
return int(gold_toks == pred_toks) |
|
if num_same == 0: |
|
return 0 |
|
precision = 1.0 * num_same / len(pred_toks) |
|
recall = 1.0 * num_same / len(gold_toks) |
|
f1 = (2 * precision * recall) / (precision + recall) |
|
return f1 |
|
|
|
|
|
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans): |
|
"""Finds best threshold.""" |
|
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) |
|
cur_score = num_no_ans |
|
best_score = cur_score |
|
best_thresh = 0.0 |
|
qid_list = sorted(na_probs, key=lambda k: na_probs[k]) |
|
for qid in qid_list: |
|
if qid not in scores: |
|
continue |
|
if qid_to_has_ans[qid]: |
|
diff = scores[qid] |
|
else: |
|
if preds[qid]: |
|
diff = -1 |
|
else: |
|
diff = 0 |
|
cur_score += diff |
|
if cur_score > best_score: |
|
best_score = cur_score |
|
best_thresh = na_probs[qid] |
|
|
|
has_ans_score, has_ans_cnt = 0, 0 |
|
for qid in qid_list: |
|
if not qid_to_has_ans[qid]: |
|
continue |
|
has_ans_cnt += 1 |
|
|
|
if qid not in scores: |
|
continue |
|
has_ans_score += scores[qid] |
|
|
|
return 100.0 * best_score / len( |
|
scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt |
|
|
|
|
|
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, |
|
qid_to_has_ans): |
|
"""Finds all best threshold.""" |
|
best_exact, exact_thresh, has_ans_exact = find_best_thresh( |
|
preds, exact_raw, na_probs, qid_to_has_ans) |
|
best_f1, f1_thresh, has_ans_f1 = find_best_thresh(preds, f1_raw, na_probs, |
|
qid_to_has_ans) |
|
main_eval["best_exact"] = best_exact |
|
main_eval["best_exact_thresh"] = exact_thresh |
|
main_eval["best_f1"] = best_f1 |
|
main_eval["best_f1_thresh"] = f1_thresh |
|
main_eval["has_ans_exact"] = has_ans_exact |
|
main_eval["has_ans_f1"] = has_ans_f1 |
|
|
|
|
|
_PrelimPrediction = collections.namedtuple( |
|
"PrelimPrediction", [ |
|
"feature_index", "start_index", "end_index", "start_log_prob", |
|
"end_log_prob" |
|
]) |
|
|
|
_NbestPrediction = collections.namedtuple( |
|
"NbestPrediction", ["text", "start_log_prob", "end_log_prob"]) |
|
RawResult = collections.namedtuple("RawResult", [ |
|
"unique_id", "start_top_log_probs", "start_top_index", "end_top_log_probs", |
|
"end_top_index", "cls_logits" |
|
]) |
|
|
|
|
|
def _compute_softmax(scores): |
|
"""Computes softmax probability over raw logits.""" |
|
if not scores: |
|
return [] |
|
|
|
max_score = None |
|
for score in scores: |
|
if max_score is None or score > max_score: |
|
max_score = score |
|
|
|
exp_scores = [] |
|
total_sum = 0.0 |
|
for score in scores: |
|
x = math.exp(score - max_score) |
|
exp_scores.append(x) |
|
total_sum += x |
|
|
|
probs = [] |
|
for score in exp_scores: |
|
probs.append(score / total_sum) |
|
return probs |
|
|
|
|
|
class SquadExample(object): |
|
"""A single training/test example for simple sequence classification. |
|
|
|
For examples without an answer, the start and end position are -1. |
|
""" |
|
|
|
def __init__(self, |
|
qas_id, |
|
question_text, |
|
paragraph_text, |
|
orig_answer_text=None, |
|
start_position=None, |
|
is_impossible=False): |
|
self.qas_id = qas_id |
|
self.question_text = question_text |
|
self.paragraph_text = paragraph_text |
|
self.orig_answer_text = orig_answer_text |
|
self.start_position = start_position |
|
self.is_impossible = is_impossible |
|
|
|
def __str__(self): |
|
return self.__repr__() |
|
|
|
def __repr__(self): |
|
s = "" |
|
s += "qas_id: %s" % (preprocess_utils.printable_text(self.qas_id)) |
|
s += ", question_text: %s" % ( |
|
preprocess_utils.printable_text(self.question_text)) |
|
s += ", paragraph_text: [%s]" % (" ".join(self.paragraph_text)) |
|
if self.start_position: |
|
s += ", start_position: %d" % (self.start_position) |
|
if self.start_position: |
|
s += ", is_impossible: %r" % (self.is_impossible) |
|
return s |
|
|
|
|
|
def write_predictions(all_examples, all_features, all_results, n_best_size, |
|
max_answer_length, output_prediction_file, |
|
output_nbest_file, output_null_log_odds_file, orig_data, |
|
start_n_top, end_n_top): |
|
"""Writes final predictions to the json file and log-odds of null if needed.""" |
|
logging.info("Writing predictions to: %s", (output_prediction_file)) |
|
|
|
example_index_to_features = collections.defaultdict(list) |
|
for feature in all_features: |
|
example_index_to_features[feature.example_index].append(feature) |
|
|
|
unique_id_to_result = {} |
|
for result in all_results: |
|
unique_id_to_result[result.unique_id] = result |
|
|
|
all_predictions = collections.OrderedDict() |
|
all_nbest_json = collections.OrderedDict() |
|
scores_diff_json = collections.OrderedDict() |
|
|
|
for (example_index, example) in enumerate(all_examples): |
|
features = example_index_to_features[example_index] |
|
|
|
prelim_predictions = [] |
|
|
|
score_null = 1000000 |
|
|
|
for (feature_index, feature) in enumerate(features): |
|
result = unique_id_to_result[feature.unique_id] |
|
|
|
cur_null_score = result.cls_logits |
|
|
|
|
|
score_null = min(score_null, cur_null_score) |
|
|
|
for i in range(start_n_top): |
|
for j in range(end_n_top): |
|
start_log_prob = result.start_top_log_probs[i] |
|
start_index = result.start_top_index[i] |
|
|
|
j_index = i * end_n_top + j |
|
|
|
end_log_prob = result.end_top_log_probs[j_index] |
|
end_index = result.end_top_index[j_index] |
|
|
|
|
|
|
|
|
|
if start_index >= feature.paragraph_len - 1: |
|
continue |
|
if end_index >= feature.paragraph_len - 1: |
|
continue |
|
|
|
if not feature.token_is_max_context.get(start_index, False): |
|
continue |
|
if end_index < start_index: |
|
continue |
|
length = end_index - start_index + 1 |
|
if length > max_answer_length: |
|
continue |
|
|
|
prelim_predictions.append( |
|
_PrelimPrediction( |
|
feature_index=feature_index, |
|
start_index=start_index, |
|
end_index=end_index, |
|
start_log_prob=start_log_prob, |
|
end_log_prob=end_log_prob)) |
|
|
|
prelim_predictions = sorted( |
|
prelim_predictions, |
|
key=lambda x: (x.start_log_prob + x.end_log_prob), |
|
reverse=True) |
|
|
|
seen_predictions = {} |
|
nbest = [] |
|
for pred in prelim_predictions: |
|
if len(nbest) >= n_best_size: |
|
break |
|
feature = features[pred.feature_index] |
|
|
|
tok_start_to_orig_index = feature.tok_start_to_orig_index |
|
tok_end_to_orig_index = feature.tok_end_to_orig_index |
|
start_orig_pos = tok_start_to_orig_index[pred.start_index] |
|
end_orig_pos = tok_end_to_orig_index[pred.end_index] |
|
|
|
paragraph_text = example.paragraph_text |
|
final_text = paragraph_text[start_orig_pos:end_orig_pos + 1].strip() |
|
|
|
if final_text in seen_predictions: |
|
continue |
|
|
|
seen_predictions[final_text] = True |
|
|
|
nbest.append( |
|
_NbestPrediction( |
|
text=final_text, |
|
start_log_prob=pred.start_log_prob, |
|
end_log_prob=pred.end_log_prob)) |
|
|
|
|
|
|
|
if not nbest: |
|
nbest.append( |
|
_NbestPrediction(text="", start_log_prob=-1e6, end_log_prob=-1e6)) |
|
|
|
total_scores = [] |
|
best_non_null_entry = None |
|
for entry in nbest: |
|
total_scores.append(entry.start_log_prob + entry.end_log_prob) |
|
if not best_non_null_entry: |
|
best_non_null_entry = entry |
|
|
|
probs = _compute_softmax(total_scores) |
|
|
|
nbest_json = [] |
|
for (i, entry) in enumerate(nbest): |
|
output = collections.OrderedDict() |
|
output["text"] = entry.text |
|
output["probability"] = probs[i] |
|
output["start_log_prob"] = entry.start_log_prob |
|
output["end_log_prob"] = entry.end_log_prob |
|
nbest_json.append(output) |
|
|
|
assert len(nbest_json) >= 1 |
|
assert best_non_null_entry is not None |
|
|
|
score_diff = score_null |
|
scores_diff_json[example.qas_id] = score_diff |
|
|
|
all_predictions[example.qas_id] = best_non_null_entry.text |
|
|
|
all_nbest_json[example.qas_id] = nbest_json |
|
|
|
with tf.io.gfile.GFile(output_prediction_file, "w") as writer: |
|
writer.write(json.dumps(all_predictions, indent=4) + "\n") |
|
|
|
with tf.io.gfile.GFile(output_nbest_file, "w") as writer: |
|
writer.write(json.dumps(all_nbest_json, indent=4) + "\n") |
|
|
|
with tf.io.gfile.GFile(output_null_log_odds_file, "w") as writer: |
|
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") |
|
|
|
qid_to_has_ans = make_qid_to_has_ans(orig_data) |
|
exact_raw, f1_raw = get_raw_scores(orig_data, all_predictions) |
|
out_eval = {} |
|
|
|
find_all_best_thresh(out_eval, all_predictions, exact_raw, f1_raw, |
|
scores_diff_json, qid_to_has_ans) |
|
|
|
return out_eval |
|
|
|
|
|
def read_squad_examples(input_file, is_training): |
|
"""Reads a SQuAD json file into a list of SquadExample.""" |
|
with tf.io.gfile.GFile(input_file, "r") as reader: |
|
input_data = json.load(reader)["data"] |
|
|
|
examples = [] |
|
for entry in input_data: |
|
for paragraph in entry["paragraphs"]: |
|
paragraph_text = paragraph["context"] |
|
|
|
for qa in paragraph["qas"]: |
|
qas_id = qa["id"] |
|
question_text = qa["question"] |
|
start_position = None |
|
orig_answer_text = None |
|
is_impossible = False |
|
|
|
if is_training: |
|
is_impossible = qa["is_impossible"] |
|
if (len(qa["answers"]) != 1) and (not is_impossible): |
|
raise ValueError( |
|
"For training, each question should have exactly 1 answer.") |
|
if not is_impossible: |
|
answer = qa["answers"][0] |
|
orig_answer_text = answer["text"] |
|
start_position = answer["answer_start"] |
|
else: |
|
start_position = -1 |
|
orig_answer_text = "" |
|
|
|
example = SquadExample( |
|
qas_id=qas_id, |
|
question_text=question_text, |
|
paragraph_text=paragraph_text, |
|
orig_answer_text=orig_answer_text, |
|
start_position=start_position, |
|
is_impossible=is_impossible) |
|
examples.append(example) |
|
|
|
return examples |
|
|
|
|
|
|
|
def _convert_index(index, pos, M=None, is_start=True): |
|
"""Converts index.""" |
|
if index[pos] is not None: |
|
return index[pos] |
|
N = len(index) |
|
rear = pos |
|
while rear < N - 1 and index[rear] is None: |
|
rear += 1 |
|
front = pos |
|
while front > 0 and index[front] is None: |
|
front -= 1 |
|
assert index[front] is not None or index[rear] is not None |
|
if index[front] is None: |
|
if index[rear] >= 1: |
|
if is_start: |
|
return 0 |
|
else: |
|
return index[rear] - 1 |
|
return index[rear] |
|
if index[rear] is None: |
|
if M is not None and index[front] < M - 1: |
|
if is_start: |
|
return index[front] + 1 |
|
else: |
|
return M - 1 |
|
return index[front] |
|
if is_start: |
|
if index[rear] > index[front] + 1: |
|
return index[front] + 1 |
|
else: |
|
return index[rear] |
|
else: |
|
if index[rear] > index[front] + 1: |
|
return index[rear] - 1 |
|
else: |
|
return index[front] |
|
|
|
|
|
def convert_examples_to_features(examples, sp_model, max_seq_length, doc_stride, |
|
max_query_length, is_training, output_fn, |
|
uncased): |
|
"""Loads a data file into a list of `InputBatch`s.""" |
|
|
|
cnt_pos, cnt_neg = 0, 0 |
|
unique_id = 1000000000 |
|
max_N, max_M = 1024, 1024 |
|
f = np.zeros((max_N, max_M), dtype=np.float32) |
|
|
|
for (example_index, example) in enumerate(examples): |
|
|
|
if example_index % 100 == 0: |
|
logging.info("Converting {}/{} pos {} neg {}".format( |
|
example_index, len(examples), cnt_pos, cnt_neg)) |
|
|
|
query_tokens = preprocess_utils.encode_ids( |
|
sp_model, |
|
preprocess_utils.preprocess_text(example.question_text, lower=uncased)) |
|
|
|
if len(query_tokens) > max_query_length: |
|
query_tokens = query_tokens[0:max_query_length] |
|
|
|
paragraph_text = example.paragraph_text |
|
para_tokens = preprocess_utils.encode_pieces( |
|
sp_model, |
|
preprocess_utils.preprocess_text(example.paragraph_text, lower=uncased)) |
|
|
|
chartok_to_tok_index = [] |
|
tok_start_to_chartok_index = [] |
|
tok_end_to_chartok_index = [] |
|
char_cnt = 0 |
|
for i, token in enumerate(para_tokens): |
|
chartok_to_tok_index.extend([i] * len(token)) |
|
tok_start_to_chartok_index.append(char_cnt) |
|
char_cnt += len(token) |
|
tok_end_to_chartok_index.append(char_cnt - 1) |
|
|
|
tok_cat_text = "".join(para_tokens).replace(SPIECE_UNDERLINE, " ") |
|
N, M = len(paragraph_text), len(tok_cat_text) |
|
|
|
if N > max_N or M > max_M: |
|
max_N = max(N, max_N) |
|
max_M = max(M, max_M) |
|
f = np.zeros((max_N, max_M), dtype=np.float32) |
|
gc.collect() |
|
|
|
g = {} |
|
|
|
|
|
def _lcs_match(max_dist): |
|
"""LCS match.""" |
|
f.fill(0) |
|
g.clear() |
|
|
|
|
|
|
|
for i in range(N): |
|
|
|
|
|
|
|
|
|
|
|
for j in range(i - max_dist, i + max_dist): |
|
if j >= M or j < 0: |
|
continue |
|
|
|
if i > 0: |
|
g[(i, j)] = 0 |
|
f[i, j] = f[i - 1, j] |
|
|
|
if j > 0 and f[i, j - 1] > f[i, j]: |
|
g[(i, j)] = 1 |
|
f[i, j] = f[i, j - 1] |
|
|
|
f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0 |
|
if (preprocess_utils.preprocess_text( |
|
paragraph_text[i], lower=uncased, |
|
remove_space=False) == tok_cat_text[j] and f_prev + 1 > f[i, j]): |
|
g[(i, j)] = 2 |
|
f[i, j] = f_prev + 1 |
|
|
|
max_dist = abs(N - M) + 5 |
|
for _ in range(2): |
|
_lcs_match(max_dist) |
|
if f[N - 1, M - 1] > 0.8 * N: |
|
break |
|
max_dist *= 2 |
|
|
|
orig_to_chartok_index = [None] * N |
|
chartok_to_orig_index = [None] * M |
|
i, j = N - 1, M - 1 |
|
while i >= 0 and j >= 0: |
|
if (i, j) not in g: |
|
break |
|
if g[(i, j)] == 2: |
|
orig_to_chartok_index[i] = j |
|
chartok_to_orig_index[j] = i |
|
i, j = i - 1, j - 1 |
|
elif g[(i, j)] == 1: |
|
j = j - 1 |
|
else: |
|
i = i - 1 |
|
|
|
if all( |
|
v is None for v in orig_to_chartok_index) or f[N - 1, M - 1] < 0.8 * N: |
|
print("MISMATCH DETECTED!") |
|
continue |
|
|
|
tok_start_to_orig_index = [] |
|
tok_end_to_orig_index = [] |
|
for i in range(len(para_tokens)): |
|
start_chartok_pos = tok_start_to_chartok_index[i] |
|
end_chartok_pos = tok_end_to_chartok_index[i] |
|
start_orig_pos = _convert_index( |
|
chartok_to_orig_index, start_chartok_pos, N, is_start=True) |
|
end_orig_pos = _convert_index( |
|
chartok_to_orig_index, end_chartok_pos, N, is_start=False) |
|
|
|
tok_start_to_orig_index.append(start_orig_pos) |
|
tok_end_to_orig_index.append(end_orig_pos) |
|
|
|
if not is_training: |
|
tok_start_position = tok_end_position = None |
|
|
|
if is_training and example.is_impossible: |
|
tok_start_position = -1 |
|
tok_end_position = -1 |
|
|
|
if is_training and not example.is_impossible: |
|
start_position = example.start_position |
|
end_position = start_position + len(example.orig_answer_text) - 1 |
|
|
|
start_chartok_pos = _convert_index( |
|
orig_to_chartok_index, start_position, is_start=True) |
|
tok_start_position = chartok_to_tok_index[start_chartok_pos] |
|
|
|
end_chartok_pos = _convert_index( |
|
orig_to_chartok_index, end_position, is_start=False) |
|
tok_end_position = chartok_to_tok_index[end_chartok_pos] |
|
assert tok_start_position <= tok_end_position |
|
|
|
def _piece_to_id(x): |
|
if six.PY2 and isinstance(x, unicode): |
|
x = x.encode("utf-8") |
|
return sp_model.PieceToId(x) |
|
|
|
all_doc_tokens = list(map(_piece_to_id, para_tokens)) |
|
|
|
|
|
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 |
|
|
|
|
|
|
|
|
|
_DocSpan = collections.namedtuple( |
|
"DocSpan", ["start", "length"]) |
|
doc_spans = [] |
|
start_offset = 0 |
|
while start_offset < len(all_doc_tokens): |
|
length = len(all_doc_tokens) - start_offset |
|
if length > max_tokens_for_doc: |
|
length = max_tokens_for_doc |
|
doc_spans.append(_DocSpan(start=start_offset, length=length)) |
|
if start_offset + length == len(all_doc_tokens): |
|
break |
|
start_offset += min(length, doc_stride) |
|
|
|
for (doc_span_index, doc_span) in enumerate(doc_spans): |
|
tokens = [] |
|
token_is_max_context = {} |
|
segment_ids = [] |
|
p_mask = [] |
|
|
|
cur_tok_start_to_orig_index = [] |
|
cur_tok_end_to_orig_index = [] |
|
|
|
for i in range(doc_span.length): |
|
split_token_index = doc_span.start + i |
|
|
|
cur_tok_start_to_orig_index.append( |
|
tok_start_to_orig_index[split_token_index]) |
|
cur_tok_end_to_orig_index.append( |
|
tok_end_to_orig_index[split_token_index]) |
|
|
|
is_max_context = _check_is_max_context(doc_spans, doc_span_index, |
|
split_token_index) |
|
token_is_max_context[len(tokens)] = is_max_context |
|
tokens.append(all_doc_tokens[split_token_index]) |
|
segment_ids.append(data_utils.SEG_ID_P) |
|
p_mask.append(0) |
|
|
|
paragraph_len = len(tokens) |
|
|
|
tokens.append(data_utils.SEP_ID) |
|
segment_ids.append(data_utils.SEG_ID_P) |
|
p_mask.append(1) |
|
|
|
|
|
|
|
for token in query_tokens: |
|
tokens.append(token) |
|
segment_ids.append(data_utils.SEG_ID_Q) |
|
p_mask.append(1) |
|
tokens.append(data_utils.SEP_ID) |
|
segment_ids.append(data_utils.SEG_ID_Q) |
|
p_mask.append(1) |
|
|
|
cls_index = len(segment_ids) |
|
tokens.append(data_utils.CLS_ID) |
|
segment_ids.append(data_utils.SEG_ID_CLS) |
|
p_mask.append(0) |
|
|
|
input_ids = tokens |
|
|
|
|
|
|
|
input_mask = [0] * len(input_ids) |
|
|
|
|
|
while len(input_ids) < max_seq_length: |
|
input_ids.append(0) |
|
input_mask.append(1) |
|
segment_ids.append(data_utils.SEG_ID_PAD) |
|
p_mask.append(1) |
|
|
|
assert len(input_ids) == max_seq_length |
|
assert len(input_mask) == max_seq_length |
|
assert len(segment_ids) == max_seq_length |
|
assert len(p_mask) == max_seq_length |
|
|
|
span_is_impossible = example.is_impossible |
|
start_position = None |
|
end_position = None |
|
if is_training and not span_is_impossible: |
|
|
|
|
|
doc_start = doc_span.start |
|
doc_end = doc_span.start + doc_span.length - 1 |
|
out_of_span = False |
|
if not (tok_start_position >= doc_start and |
|
tok_end_position <= doc_end): |
|
out_of_span = True |
|
if out_of_span: |
|
|
|
start_position = 0 |
|
end_position = 0 |
|
span_is_impossible = True |
|
else: |
|
|
|
|
|
doc_offset = 0 |
|
start_position = tok_start_position - doc_start + doc_offset |
|
end_position = tok_end_position - doc_start + doc_offset |
|
|
|
if is_training and span_is_impossible: |
|
start_position = cls_index |
|
end_position = cls_index |
|
|
|
if example_index < 20: |
|
logging.info("*** Example ***") |
|
logging.info("unique_id: %s", unique_id) |
|
logging.info("example_index: %s", example_index) |
|
logging.info("doc_span_index: %s", doc_span_index) |
|
logging.info("tok_start_to_orig_index: %s", |
|
" ".join([str(x) for x in cur_tok_start_to_orig_index])) |
|
logging.info("tok_end_to_orig_index: %s", |
|
" ".join([str(x) for x in cur_tok_end_to_orig_index])) |
|
logging.info( |
|
"token_is_max_context: %s", " ".join([ |
|
"%d:%s" % (x, y) |
|
for (x, y) in six.iteritems(token_is_max_context) |
|
])) |
|
logging.info("input_ids: %s", " ".join([str(x) for x in input_ids])) |
|
logging.info("input_mask: %s", " ".join([str(x) for x in input_mask])) |
|
logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) |
|
|
|
if is_training and span_is_impossible: |
|
logging.info("impossible example span") |
|
|
|
if is_training and not span_is_impossible: |
|
pieces = [ |
|
sp_model.IdToPiece(token) |
|
for token in tokens[start_position:(end_position + 1)] |
|
] |
|
answer_text = sp_model.DecodePieces(pieces) |
|
logging.info("start_position: %d", start_position) |
|
logging.info("end_position: %d", end_position) |
|
logging.info("answer: %s", |
|
preprocess_utils.printable_text(answer_text)) |
|
|
|
|
|
|
|
|
|
|
|
if is_training: |
|
feat_example_index = None |
|
else: |
|
feat_example_index = example_index |
|
|
|
feature = InputFeatures( |
|
unique_id=unique_id, |
|
example_index=feat_example_index, |
|
doc_span_index=doc_span_index, |
|
tok_start_to_orig_index=cur_tok_start_to_orig_index, |
|
tok_end_to_orig_index=cur_tok_end_to_orig_index, |
|
token_is_max_context=token_is_max_context, |
|
input_ids=input_ids, |
|
input_mask=input_mask, |
|
p_mask=p_mask, |
|
segment_ids=segment_ids, |
|
paragraph_len=paragraph_len, |
|
cls_index=cls_index, |
|
start_position=start_position, |
|
end_position=end_position, |
|
is_impossible=span_is_impossible) |
|
|
|
|
|
output_fn(feature) |
|
|
|
unique_id += 1 |
|
if span_is_impossible: |
|
cnt_neg += 1 |
|
else: |
|
cnt_pos += 1 |
|
|
|
logging.info("Total number of instances: %d = pos %d + neg %d", |
|
cnt_pos + cnt_neg, cnt_pos, cnt_neg) |
|
|
|
|
|
def _check_is_max_context(doc_spans, cur_span_index, position): |
|
"""Check if this is the "max context" doc span for the token.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
best_score = None |
|
best_span_index = None |
|
for (span_index, doc_span) in enumerate(doc_spans): |
|
end = doc_span.start + doc_span.length - 1 |
|
if position < doc_span.start: |
|
continue |
|
if position > end: |
|
continue |
|
num_left_context = position - doc_span.start |
|
num_right_context = end - position |
|
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length |
|
if best_score is None or score > best_score: |
|
best_score = score |
|
best_span_index = span_index |
|
|
|
return cur_span_index == best_span_index |
|
|
|
|
|
class FeatureWriter(object): |
|
"""Writes InputFeature to TF example file.""" |
|
|
|
def __init__(self, filename, is_training): |
|
self.filename = filename |
|
self.is_training = is_training |
|
self.num_features = 0 |
|
self._writer = tf.io.TFRecordWriter(filename) |
|
|
|
def process_feature(self, feature): |
|
"""Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" |
|
self.num_features += 1 |
|
|
|
def create_int_feature(values): |
|
feature = tf.train.Feature( |
|
int64_list=tf.train.Int64List(value=list(values))) |
|
return feature |
|
|
|
def create_float_feature(values): |
|
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) |
|
return f |
|
|
|
features = collections.OrderedDict() |
|
features["unique_ids"] = create_int_feature([feature.unique_id]) |
|
features["input_ids"] = create_int_feature(feature.input_ids) |
|
features["input_mask"] = create_float_feature(feature.input_mask) |
|
features["p_mask"] = create_float_feature(feature.p_mask) |
|
features["segment_ids"] = create_int_feature(feature.segment_ids) |
|
|
|
features["cls_index"] = create_int_feature([feature.cls_index]) |
|
|
|
if self.is_training: |
|
features["start_positions"] = create_int_feature([feature.start_position]) |
|
features["end_positions"] = create_int_feature([feature.end_position]) |
|
impossible = 0 |
|
if feature.is_impossible: |
|
impossible = 1 |
|
features["is_impossible"] = create_float_feature([impossible]) |
|
|
|
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) |
|
self._writer.write(tf_example.SerializeToString()) |
|
|
|
def close(self): |
|
self._writer.close() |
|
|
|
|
|
def create_eval_data(spm_basename, |
|
sp_model, |
|
eval_examples, |
|
max_seq_length, |
|
max_query_length, |
|
doc_stride, |
|
uncased, |
|
output_dir=None): |
|
"""Creates evaluation tfrecords.""" |
|
eval_features = [] |
|
eval_writer = None |
|
if output_dir: |
|
eval_rec_file = os.path.join( |
|
output_dir, |
|
"{}.slen-{}.qlen-{}.eval.tf_record".format(spm_basename, max_seq_length, |
|
max_query_length)) |
|
eval_feature_file = os.path.join( |
|
output_dir, |
|
"{}.slen-{}.qlen-{}.eval.features.pkl".format(spm_basename, |
|
max_seq_length, |
|
max_query_length)) |
|
|
|
eval_writer = FeatureWriter(filename=eval_rec_file, is_training=False) |
|
|
|
def append_feature(feature): |
|
eval_features.append(feature) |
|
if eval_writer: |
|
eval_writer.process_feature(feature) |
|
|
|
convert_examples_to_features( |
|
examples=eval_examples, |
|
sp_model=sp_model, |
|
max_seq_length=max_seq_length, |
|
doc_stride=doc_stride, |
|
max_query_length=max_query_length, |
|
is_training=False, |
|
output_fn=append_feature, |
|
uncased=uncased) |
|
|
|
if eval_writer: |
|
eval_writer.close() |
|
with tf.io.gfile.GFile(eval_feature_file, "wb") as fout: |
|
pickle.dump(eval_features, fout) |
|
|
|
return eval_features |
|
|