Spaces:
Sleeping
Sleeping
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Helper functions for running models in a distributed setting.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import json | |
import os | |
import random | |
import string | |
from absl import logging | |
import tensorflow.compat.v2 as tf | |
from official.utils.misc import tpu_lib | |
def _collective_communication(all_reduce_alg): | |
"""Return a CollectiveCommunication based on all_reduce_alg. | |
Args: | |
all_reduce_alg: a string specifying which collective communication to pick, | |
or None. | |
Returns: | |
tf.distribute.experimental.CollectiveCommunication object | |
Raises: | |
ValueError: if `all_reduce_alg` not in [None, "ring", "nccl"] | |
""" | |
collective_communication_options = { | |
None: tf.distribute.experimental.CollectiveCommunication.AUTO, | |
"ring": tf.distribute.experimental.CollectiveCommunication.RING, | |
"nccl": tf.distribute.experimental.CollectiveCommunication.NCCL | |
} | |
if all_reduce_alg not in collective_communication_options: | |
raise ValueError( | |
"When used with `multi_worker_mirrored`, valid values for " | |
"all_reduce_alg are [`ring`, `nccl`]. Supplied value: {}".format( | |
all_reduce_alg)) | |
return collective_communication_options[all_reduce_alg] | |
def _mirrored_cross_device_ops(all_reduce_alg, num_packs): | |
"""Return a CrossDeviceOps based on all_reduce_alg and num_packs. | |
Args: | |
all_reduce_alg: a string specifying which cross device op to pick, or None. | |
num_packs: an integer specifying number of packs for the cross device op. | |
Returns: | |
tf.distribute.CrossDeviceOps object or None. | |
Raises: | |
ValueError: if `all_reduce_alg` not in [None, "nccl", "hierarchical_copy"]. | |
""" | |
if all_reduce_alg is None: | |
return None | |
mirrored_all_reduce_options = { | |
"nccl": tf.distribute.NcclAllReduce, | |
"hierarchical_copy": tf.distribute.HierarchicalCopyAllReduce | |
} | |
if all_reduce_alg not in mirrored_all_reduce_options: | |
raise ValueError( | |
"When used with `mirrored`, valid values for all_reduce_alg are " | |
"[`nccl`, `hierarchical_copy`]. Supplied value: {}".format( | |
all_reduce_alg)) | |
cross_device_ops_class = mirrored_all_reduce_options[all_reduce_alg] | |
return cross_device_ops_class(num_packs=num_packs) | |
def get_distribution_strategy(distribution_strategy="mirrored", | |
num_gpus=0, | |
all_reduce_alg=None, | |
num_packs=1, | |
tpu_address=None): | |
"""Return a DistributionStrategy for running the model. | |
Args: | |
distribution_strategy: a string specifying which distribution strategy to | |
use. Accepted values are "off", "one_device", "mirrored", | |
"parameter_server", "multi_worker_mirrored", and "tpu" -- case insensitive. | |
"off" means not to use Distribution Strategy; "tpu" means to use | |
TPUStrategy using `tpu_address`. | |
num_gpus: Number of GPUs to run this model. | |
all_reduce_alg: Optional. Specifies which algorithm to use when performing | |
all-reduce. For `MirroredStrategy`, valid values are "nccl" and | |
"hierarchical_copy". For `MultiWorkerMirroredStrategy`, valid values are | |
"ring" and "nccl". If None, DistributionStrategy will choose based on | |
device topology. | |
num_packs: Optional. Sets the `num_packs` in `tf.distribute.NcclAllReduce` | |
or `tf.distribute.HierarchicalCopyAllReduce` for `MirroredStrategy`. | |
tpu_address: Optional. String that represents TPU to connect to. Must not | |
be None if `distribution_strategy` is set to `tpu`. | |
Returns: | |
tf.distribute.DistibutionStrategy object. | |
Raises: | |
ValueError: if `distribution_strategy` is "off" or "one_device" and | |
`num_gpus` is larger than 1; or `num_gpus` is negative or if | |
`distribution_strategy` is `tpu` but `tpu_address` is not specified. | |
""" | |
if num_gpus < 0: | |
raise ValueError("`num_gpus` can not be negative.") | |
distribution_strategy = distribution_strategy.lower() | |
if distribution_strategy == "off": | |
if num_gpus > 1: | |
raise ValueError( | |
"When {} GPUs are specified, distribution_strategy " | |
"flag cannot be set to `off`.".format(num_gpus)) | |
return None | |
if distribution_strategy == "tpu": | |
# When tpu_address is an empty string, we communicate with local TPUs. | |
cluster_resolver = tpu_lib.tpu_initialize(tpu_address) | |
return tf.distribute.experimental.TPUStrategy(cluster_resolver) | |
if distribution_strategy == "multi_worker_mirrored": | |
return tf.distribute.experimental.MultiWorkerMirroredStrategy( | |
communication=_collective_communication(all_reduce_alg)) | |
if distribution_strategy == "one_device": | |
if num_gpus == 0: | |
return tf.distribute.OneDeviceStrategy("device:CPU:0") | |
if num_gpus > 1: | |
raise ValueError("`OneDeviceStrategy` can not be used for more than " | |
"one device.") | |
return tf.distribute.OneDeviceStrategy("device:GPU:0") | |
if distribution_strategy == "mirrored": | |
if num_gpus == 0: | |
devices = ["device:CPU:0"] | |
else: | |
devices = ["device:GPU:%d" % i for i in range(num_gpus)] | |
return tf.distribute.MirroredStrategy( | |
devices=devices, | |
cross_device_ops=_mirrored_cross_device_ops(all_reduce_alg, num_packs)) | |
if distribution_strategy == "parameter_server": | |
return tf.distribute.experimental.ParameterServerStrategy() | |
raise ValueError( | |
"Unrecognized Distribution Strategy: %r" % distribution_strategy) | |
def configure_cluster(worker_hosts=None, task_index=-1): | |
"""Set multi-worker cluster spec in TF_CONFIG environment variable. | |
Args: | |
worker_hosts: comma-separated list of worker ip:port pairs. | |
Returns: | |
Number of workers in the cluster. | |
""" | |
tf_config = json.loads(os.environ.get("TF_CONFIG", "{}")) | |
if tf_config: | |
num_workers = (len(tf_config["cluster"].get("chief", [])) + | |
len(tf_config["cluster"].get("worker", []))) | |
elif worker_hosts: | |
workers = worker_hosts.split(",") | |
num_workers = len(workers) | |
if num_workers > 1 and task_index < 0: | |
raise ValueError("Must specify task_index when number of workers > 1") | |
task_index = 0 if num_workers == 1 else task_index | |
os.environ["TF_CONFIG"] = json.dumps({ | |
"cluster": { | |
"worker": workers | |
}, | |
"task": {"type": "worker", "index": task_index} | |
}) | |
else: | |
num_workers = 1 | |
return num_workers | |
def get_strategy_scope(strategy): | |
if strategy: | |
strategy_scope = strategy.scope() | |
else: | |
strategy_scope = DummyContextManager() | |
return strategy_scope | |
class DummyContextManager(object): | |
def __enter__(self): | |
pass | |
def __exit__(self, *args): | |
pass | |