|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Data parser and processing for Mask R-CNN.""" |
|
|
|
import tensorflow as tf |
|
|
|
from official.vision.detection.dataloader import anchor |
|
from official.vision.detection.dataloader import mode_keys as ModeKeys |
|
from official.vision.detection.dataloader import tf_example_decoder |
|
from official.vision.detection.utils import box_utils |
|
from official.vision.detection.utils import dataloader_utils |
|
from official.vision.detection.utils import input_utils |
|
|
|
|
|
class Parser(object): |
|
"""Parser to parse an image and its annotations into a dictionary of tensors.""" |
|
|
|
def __init__(self, |
|
output_size, |
|
min_level, |
|
max_level, |
|
num_scales, |
|
aspect_ratios, |
|
anchor_size, |
|
rpn_match_threshold=0.7, |
|
rpn_unmatched_threshold=0.3, |
|
rpn_batch_size_per_im=256, |
|
rpn_fg_fraction=0.5, |
|
aug_rand_hflip=False, |
|
aug_scale_min=1.0, |
|
aug_scale_max=1.0, |
|
skip_crowd_during_training=True, |
|
max_num_instances=100, |
|
include_mask=False, |
|
mask_crop_size=112, |
|
use_bfloat16=True, |
|
mode=None): |
|
"""Initializes parameters for parsing annotations in the dataset. |
|
|
|
Args: |
|
output_size: `Tensor` or `list` for [height, width] of output image. The |
|
output_size should be divided by the largest feature stride 2^max_level. |
|
min_level: `int` number of minimum level of the output feature pyramid. |
|
max_level: `int` number of maximum level of the output feature pyramid. |
|
num_scales: `int` number representing intermediate scales added |
|
on each level. For instances, num_scales=2 adds one additional |
|
intermediate anchor scales [2^0, 2^0.5] on each level. |
|
aspect_ratios: `list` of float numbers representing the aspect raito |
|
anchors added on each level. The number indicates the ratio of width to |
|
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors |
|
on each scale level. |
|
anchor_size: `float` number representing the scale of size of the base |
|
anchor to the feature stride 2^level. |
|
rpn_match_threshold: |
|
rpn_unmatched_threshold: |
|
rpn_batch_size_per_im: |
|
rpn_fg_fraction: |
|
aug_rand_hflip: `bool`, if True, augment training with random |
|
horizontal flip. |
|
aug_scale_min: `float`, the minimum scale applied to `output_size` for |
|
data augmentation during training. |
|
aug_scale_max: `float`, the maximum scale applied to `output_size` for |
|
data augmentation during training. |
|
skip_crowd_during_training: `bool`, if True, skip annotations labeled with |
|
`is_crowd` equals to 1. |
|
max_num_instances: `int` number of maximum number of instances in an |
|
image. The groundtruth data will be padded to `max_num_instances`. |
|
include_mask: a bool to indicate whether parse mask groundtruth. |
|
mask_crop_size: the size which groundtruth mask is cropped to. |
|
use_bfloat16: `bool`, if True, cast output image to tf.bfloat16. |
|
mode: a ModeKeys. Specifies if this is training, evaluation, prediction |
|
or prediction with groundtruths in the outputs. |
|
""" |
|
self._mode = mode |
|
self._max_num_instances = max_num_instances |
|
self._skip_crowd_during_training = skip_crowd_during_training |
|
self._is_training = (mode == ModeKeys.TRAIN) |
|
|
|
self._example_decoder = tf_example_decoder.TfExampleDecoder( |
|
include_mask=include_mask) |
|
|
|
|
|
self._output_size = output_size |
|
self._min_level = min_level |
|
self._max_level = max_level |
|
self._num_scales = num_scales |
|
self._aspect_ratios = aspect_ratios |
|
self._anchor_size = anchor_size |
|
|
|
|
|
self._rpn_match_threshold = rpn_match_threshold |
|
self._rpn_unmatched_threshold = rpn_unmatched_threshold |
|
self._rpn_batch_size_per_im = rpn_batch_size_per_im |
|
self._rpn_fg_fraction = rpn_fg_fraction |
|
|
|
|
|
self._aug_rand_hflip = aug_rand_hflip |
|
self._aug_scale_min = aug_scale_min |
|
self._aug_scale_max = aug_scale_max |
|
|
|
|
|
self._include_mask = include_mask |
|
self._mask_crop_size = mask_crop_size |
|
|
|
|
|
self._use_bfloat16 = use_bfloat16 |
|
|
|
|
|
if mode == ModeKeys.TRAIN: |
|
self._parse_fn = self._parse_train_data |
|
elif mode == ModeKeys.EVAL: |
|
self._parse_fn = self._parse_eval_data |
|
elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT: |
|
self._parse_fn = self._parse_predict_data |
|
else: |
|
raise ValueError('mode is not defined.') |
|
|
|
def __call__(self, value): |
|
"""Parses data to an image and associated training labels. |
|
|
|
Args: |
|
value: a string tensor holding a serialized tf.Example proto. |
|
|
|
Returns: |
|
image, labels: if mode == ModeKeys.TRAIN. see _parse_train_data. |
|
{'images': image, 'labels': labels}: if mode == ModeKeys.PREDICT |
|
or ModeKeys.PREDICT_WITH_GT. |
|
""" |
|
with tf.name_scope('parser'): |
|
data = self._example_decoder.decode(value) |
|
return self._parse_fn(data) |
|
|
|
def _parse_train_data(self, data): |
|
"""Parses data for training. |
|
|
|
Args: |
|
data: the decoded tensor dictionary from TfExampleDecoder. |
|
|
|
Returns: |
|
image: image tensor that is preproessed to have normalized value and |
|
dimension [output_size[0], output_size[1], 3] |
|
labels: a dictionary of tensors used for training. The following describes |
|
{key: value} pairs in the dictionary. |
|
image_info: a 2D `Tensor` that encodes the information of the image and |
|
the applied preprocessing. It is in the format of |
|
[[original_height, original_width], [scaled_height, scaled_width], |
|
anchor_boxes: ordered dictionary with keys |
|
[min_level, min_level+1, ..., max_level]. The values are tensor with |
|
shape [height_l, width_l, 4] representing anchor boxes at each level. |
|
rpn_score_targets: ordered dictionary with keys |
|
[min_level, min_level+1, ..., max_level]. The values are tensor with |
|
shape [height_l, width_l, anchors_per_location]. The height_l and |
|
width_l represent the dimension of class logits at l-th level. |
|
rpn_box_targets: ordered dictionary with keys |
|
[min_level, min_level+1, ..., max_level]. The values are tensor with |
|
shape [height_l, width_l, anchors_per_location * 4]. The height_l and |
|
width_l represent the dimension of bounding box regression output at |
|
l-th level. |
|
gt_boxes: Groundtruth bounding box annotations. The box is represented |
|
in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled |
|
image that is fed to the network. The tennsor is padded with -1 to |
|
the fixed dimension [self._max_num_instances, 4]. |
|
gt_classes: Groundtruth classes annotations. The tennsor is padded |
|
with -1 to the fixed dimension [self._max_num_instances]. |
|
gt_masks: groundtrugh masks cropped by the bounding box and |
|
resized to a fixed size determined by mask_crop_size. |
|
""" |
|
classes = data['groundtruth_classes'] |
|
boxes = data['groundtruth_boxes'] |
|
if self._include_mask: |
|
masks = data['groundtruth_instance_masks'] |
|
|
|
is_crowds = data['groundtruth_is_crowd'] |
|
|
|
if self._skip_crowd_during_training and self._is_training: |
|
num_groundtrtuhs = tf.shape(classes)[0] |
|
with tf.control_dependencies([num_groundtrtuhs, is_crowds]): |
|
indices = tf.cond( |
|
tf.greater(tf.size(is_crowds), 0), |
|
lambda: tf.where(tf.logical_not(is_crowds))[:, 0], |
|
lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) |
|
classes = tf.gather(classes, indices) |
|
boxes = tf.gather(boxes, indices) |
|
if self._include_mask: |
|
masks = tf.gather(masks, indices) |
|
|
|
|
|
image = data['image'] |
|
image_shape = tf.shape(image)[0:2] |
|
|
|
|
|
image = input_utils.normalize_image(image) |
|
|
|
|
|
if self._aug_rand_hflip: |
|
if self._include_mask: |
|
image, boxes, masks = input_utils.random_horizontal_flip( |
|
image, boxes, masks) |
|
else: |
|
image, boxes = input_utils.random_horizontal_flip( |
|
image, boxes) |
|
|
|
|
|
|
|
boxes = box_utils.denormalize_boxes(boxes, image_shape) |
|
|
|
|
|
image, image_info = input_utils.resize_and_crop_image( |
|
image, |
|
self._output_size, |
|
padded_size=input_utils.compute_padded_size( |
|
self._output_size, 2 ** self._max_level), |
|
aug_scale_min=self._aug_scale_min, |
|
aug_scale_max=self._aug_scale_max) |
|
image_height, image_width, _ = image.get_shape().as_list() |
|
|
|
|
|
|
|
image_scale = image_info[2, :] |
|
offset = image_info[3, :] |
|
boxes = input_utils.resize_and_crop_boxes( |
|
boxes, image_scale, image_info[1, :], offset) |
|
|
|
|
|
indices = box_utils.get_non_empty_box_indices(boxes) |
|
boxes = tf.gather(boxes, indices) |
|
classes = tf.gather(classes, indices) |
|
if self._include_mask: |
|
masks = tf.gather(masks, indices) |
|
|
|
cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) |
|
cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) |
|
cropped_boxes = box_utils.normalize_boxes(cropped_boxes, image_shape) |
|
num_masks = tf.shape(masks)[0] |
|
masks = tf.image.crop_and_resize( |
|
tf.expand_dims(masks, axis=-1), |
|
cropped_boxes, |
|
box_indices=tf.range(num_masks, dtype=tf.int32), |
|
crop_size=[self._mask_crop_size, self._mask_crop_size], |
|
method='bilinear') |
|
masks = tf.squeeze(masks, axis=-1) |
|
|
|
|
|
|
|
|
|
input_anchor = anchor.Anchor( |
|
self._min_level, |
|
self._max_level, |
|
self._num_scales, |
|
self._aspect_ratios, |
|
self._anchor_size, |
|
(image_height, image_width)) |
|
anchor_labeler = anchor.RpnAnchorLabeler( |
|
input_anchor, |
|
self._rpn_match_threshold, |
|
self._rpn_unmatched_threshold, |
|
self._rpn_batch_size_per_im, |
|
self._rpn_fg_fraction) |
|
rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors( |
|
boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32)) |
|
|
|
|
|
if self._use_bfloat16: |
|
image = tf.cast(image, dtype=tf.bfloat16) |
|
|
|
inputs = { |
|
'image': image, |
|
'image_info': image_info, |
|
} |
|
|
|
labels = { |
|
'anchor_boxes': input_anchor.multilevel_boxes, |
|
'image_info': image_info, |
|
'rpn_score_targets': rpn_score_targets, |
|
'rpn_box_targets': rpn_box_targets, |
|
} |
|
inputs['gt_boxes'] = input_utils.pad_to_fixed_size(boxes, |
|
self._max_num_instances, |
|
-1) |
|
inputs['gt_classes'] = input_utils.pad_to_fixed_size( |
|
classes, self._max_num_instances, -1) |
|
if self._include_mask: |
|
inputs['gt_masks'] = input_utils.pad_to_fixed_size( |
|
masks, self._max_num_instances, -1) |
|
|
|
return inputs, labels |
|
|
|
def _parse_eval_data(self, data): |
|
"""Parses data for evaluation.""" |
|
raise NotImplementedError('Not implemented!') |
|
|
|
def _parse_predict_data(self, data): |
|
"""Parses data for prediction. |
|
|
|
Args: |
|
data: the decoded tensor dictionary from TfExampleDecoder. |
|
|
|
Returns: |
|
A dictionary of {'images': image, 'labels': labels} where |
|
image: image tensor that is preproessed to have normalized value and |
|
dimension [output_size[0], output_size[1], 3] |
|
labels: a dictionary of tensors used for training. The following |
|
describes {key: value} pairs in the dictionary. |
|
source_ids: Source image id. Default value -1 if the source id is |
|
empty in the groundtruth annotation. |
|
image_info: a 2D `Tensor` that encodes the information of the image |
|
and the applied preprocessing. It is in the format of |
|
[[original_height, original_width], [scaled_height, scaled_width], |
|
anchor_boxes: ordered dictionary with keys |
|
[min_level, min_level+1, ..., max_level]. The values are tensor with |
|
shape [height_l, width_l, 4] representing anchor boxes at each |
|
level. |
|
""" |
|
|
|
image = data['image'] |
|
image_shape = tf.shape(image)[0:2] |
|
|
|
|
|
image = input_utils.normalize_image(image) |
|
|
|
|
|
image, image_info = input_utils.resize_and_crop_image( |
|
image, |
|
self._output_size, |
|
padded_size=input_utils.compute_padded_size( |
|
self._output_size, 2 ** self._max_level), |
|
aug_scale_min=1.0, |
|
aug_scale_max=1.0) |
|
image_height, image_width, _ = image.get_shape().as_list() |
|
|
|
|
|
if self._use_bfloat16: |
|
image = tf.cast(image, dtype=tf.bfloat16) |
|
|
|
|
|
input_anchor = anchor.Anchor( |
|
self._min_level, |
|
self._max_level, |
|
self._num_scales, |
|
self._aspect_ratios, |
|
self._anchor_size, |
|
(image_height, image_width)) |
|
|
|
labels = { |
|
'image_info': image_info, |
|
} |
|
|
|
if self._mode == ModeKeys.PREDICT_WITH_GT: |
|
|
|
boxes = box_utils.denormalize_boxes( |
|
data['groundtruth_boxes'], image_shape) |
|
groundtruths = { |
|
'source_id': data['source_id'], |
|
'height': data['height'], |
|
'width': data['width'], |
|
'num_detections': tf.shape(data['groundtruth_classes']), |
|
'boxes': boxes, |
|
'classes': data['groundtruth_classes'], |
|
'areas': data['groundtruth_area'], |
|
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), |
|
} |
|
groundtruths['source_id'] = dataloader_utils.process_source_id( |
|
groundtruths['source_id']) |
|
groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( |
|
groundtruths, self._max_num_instances) |
|
|
|
labels['groundtruths'] = groundtruths |
|
inputs = { |
|
'image': image, |
|
'image_info': image_info, |
|
} |
|
|
|
return inputs, labels |
|
|