|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Data parser and processing. |
|
|
|
Parse image and ground truths in a dataset to training targets and package them |
|
into (image, labels) tuple for RetinaNet. |
|
|
|
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar |
|
Focal Loss for Dense Object Detection. arXiv:1708.02002 |
|
""" |
|
|
|
import tensorflow as tf |
|
|
|
from official.vision.detection.dataloader import anchor |
|
from official.vision.detection.dataloader import mode_keys as ModeKeys |
|
from official.vision.detection.dataloader import tf_example_decoder |
|
from official.vision.detection.utils import box_utils |
|
from official.vision.detection.utils import input_utils |
|
|
|
|
|
def process_source_id(source_id): |
|
"""Processes source_id to the right format.""" |
|
if source_id.dtype == tf.string: |
|
source_id = tf.cast(tf.strings.to_number(source_id), tf.int32) |
|
with tf.control_dependencies([source_id]): |
|
source_id = tf.cond( |
|
pred=tf.equal(tf.size(input=source_id), 0), |
|
true_fn=lambda: tf.cast(tf.constant(-1), tf.int32), |
|
false_fn=lambda: tf.identity(source_id)) |
|
return source_id |
|
|
|
|
|
def pad_groundtruths_to_fixed_size(gt, n): |
|
"""Pads the first dimension of groundtruths labels to the fixed size.""" |
|
gt['boxes'] = input_utils.pad_to_fixed_size(gt['boxes'], n, -1) |
|
gt['is_crowds'] = input_utils.pad_to_fixed_size(gt['is_crowds'], n, 0) |
|
gt['areas'] = input_utils.pad_to_fixed_size(gt['areas'], n, -1) |
|
gt['classes'] = input_utils.pad_to_fixed_size(gt['classes'], n, -1) |
|
return gt |
|
|
|
|
|
class Parser(object): |
|
"""Parser to parse an image and its annotations into a dictionary of tensors.""" |
|
|
|
def __init__(self, |
|
output_size, |
|
min_level, |
|
max_level, |
|
num_scales, |
|
aspect_ratios, |
|
anchor_size, |
|
match_threshold=0.5, |
|
unmatched_threshold=0.5, |
|
aug_rand_hflip=False, |
|
aug_scale_min=1.0, |
|
aug_scale_max=1.0, |
|
use_autoaugment=False, |
|
autoaugment_policy_name='v0', |
|
skip_crowd_during_training=True, |
|
max_num_instances=100, |
|
use_bfloat16=True, |
|
mode=None): |
|
"""Initializes parameters for parsing annotations in the dataset. |
|
|
|
Args: |
|
output_size: `Tensor` or `list` for [height, width] of output image. The |
|
output_size should be divided by the largest feature stride 2^max_level. |
|
min_level: `int` number of minimum level of the output feature pyramid. |
|
max_level: `int` number of maximum level of the output feature pyramid. |
|
num_scales: `int` number representing intermediate scales added |
|
on each level. For instances, num_scales=2 adds one additional |
|
intermediate anchor scales [2^0, 2^0.5] on each level. |
|
aspect_ratios: `list` of float numbers representing the aspect raito |
|
anchors added on each level. The number indicates the ratio of width to |
|
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors |
|
on each scale level. |
|
anchor_size: `float` number representing the scale of size of the base |
|
anchor to the feature stride 2^level. |
|
match_threshold: `float` number between 0 and 1 representing the |
|
lower-bound threshold to assign positive labels for anchors. An anchor |
|
with a score over the threshold is labeled positive. |
|
unmatched_threshold: `float` number between 0 and 1 representing the |
|
upper-bound threshold to assign negative labels for anchors. An anchor |
|
with a score below the threshold is labeled negative. |
|
aug_rand_hflip: `bool`, if True, augment training with random |
|
horizontal flip. |
|
aug_scale_min: `float`, the minimum scale applied to `output_size` for |
|
data augmentation during training. |
|
aug_scale_max: `float`, the maximum scale applied to `output_size` for |
|
data augmentation during training. |
|
use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy |
|
during training. |
|
autoaugment_policy_name: `string` that specifies the name of the |
|
AutoAugment policy that will be used during training. |
|
skip_crowd_during_training: `bool`, if True, skip annotations labeled with |
|
`is_crowd` equals to 1. |
|
max_num_instances: `int` number of maximum number of instances in an |
|
image. The groundtruth data will be padded to `max_num_instances`. |
|
use_bfloat16: `bool`, if True, cast output image to tf.bfloat16. |
|
mode: a ModeKeys. Specifies if this is training, evaluation, prediction |
|
or prediction with groundtruths in the outputs. |
|
""" |
|
self._mode = mode |
|
self._max_num_instances = max_num_instances |
|
self._skip_crowd_during_training = skip_crowd_during_training |
|
self._is_training = (mode == ModeKeys.TRAIN) |
|
|
|
self._example_decoder = tf_example_decoder.TfExampleDecoder( |
|
include_mask=False) |
|
|
|
|
|
self._output_size = output_size |
|
self._min_level = min_level |
|
self._max_level = max_level |
|
self._num_scales = num_scales |
|
self._aspect_ratios = aspect_ratios |
|
self._anchor_size = anchor_size |
|
self._match_threshold = match_threshold |
|
self._unmatched_threshold = unmatched_threshold |
|
|
|
|
|
self._aug_rand_hflip = aug_rand_hflip |
|
self._aug_scale_min = aug_scale_min |
|
self._aug_scale_max = aug_scale_max |
|
|
|
|
|
self._use_autoaugment = use_autoaugment |
|
self._autoaugment_policy_name = autoaugment_policy_name |
|
|
|
|
|
self._use_bfloat16 = use_bfloat16 |
|
|
|
|
|
if mode == ModeKeys.TRAIN: |
|
self._parse_fn = self._parse_train_data |
|
elif mode == ModeKeys.EVAL: |
|
self._parse_fn = self._parse_eval_data |
|
elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT: |
|
self._parse_fn = self._parse_predict_data |
|
else: |
|
raise ValueError('mode is not defined.') |
|
|
|
def __call__(self, value): |
|
"""Parses data to an image and associated training labels. |
|
|
|
Args: |
|
value: a string tensor holding a serialized tf.Example proto. |
|
|
|
Returns: |
|
image: image tensor that is preproessed to have normalized value and |
|
dimension [output_size[0], output_size[1], 3] |
|
labels: |
|
cls_targets: ordered dictionary with keys |
|
[min_level, min_level+1, ..., max_level]. The values are tensor with |
|
shape [height_l, width_l, anchors_per_location]. The height_l and |
|
width_l represent the dimension of class logits at l-th level. |
|
box_targets: ordered dictionary with keys |
|
[min_level, min_level+1, ..., max_level]. The values are tensor with |
|
shape [height_l, width_l, anchors_per_location * 4]. The height_l and |
|
width_l represent the dimension of bounding box regression output at |
|
l-th level. |
|
num_positives: number of positive anchors in the image. |
|
anchor_boxes: ordered dictionary with keys |
|
[min_level, min_level+1, ..., max_level]. The values are tensor with |
|
shape [height_l, width_l, 4] representing anchor boxes at each level. |
|
image_info: a 2D `Tensor` that encodes the information of the image and |
|
the applied preprocessing. It is in the format of |
|
[[original_height, original_width], [scaled_height, scaled_width], |
|
[y_scale, x_scale], [y_offset, x_offset]]. |
|
groundtruths: |
|
source_id: source image id. Default value -1 if the source id is empty |
|
in the groundtruth annotation. |
|
boxes: groundtruth bounding box annotations. The box is represented in |
|
[y1, x1, y2, x2] format. The tennsor is padded with -1 to the fixed |
|
dimension [self._max_num_instances, 4]. |
|
classes: groundtruth classes annotations. The tennsor is padded with |
|
-1 to the fixed dimension [self._max_num_instances]. |
|
areas: groundtruth areas annotations. The tennsor is padded with -1 |
|
to the fixed dimension [self._max_num_instances]. |
|
is_crowds: groundtruth annotations to indicate if an annotation |
|
represents a group of instances by value {0, 1}. The tennsor is |
|
padded with 0 to the fixed dimension [self._max_num_instances]. |
|
""" |
|
with tf.name_scope('parser'): |
|
data = self._example_decoder.decode(value) |
|
return self._parse_fn(data) |
|
|
|
def _parse_train_data(self, data): |
|
"""Parses data for training and evaluation.""" |
|
classes = data['groundtruth_classes'] |
|
boxes = data['groundtruth_boxes'] |
|
is_crowds = data['groundtruth_is_crowd'] |
|
|
|
if self._skip_crowd_during_training and self._is_training: |
|
num_groundtrtuhs = tf.shape(input=classes)[0] |
|
with tf.control_dependencies([num_groundtrtuhs, is_crowds]): |
|
indices = tf.cond( |
|
pred=tf.greater(tf.size(input=is_crowds), 0), |
|
true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0], |
|
false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) |
|
classes = tf.gather(classes, indices) |
|
boxes = tf.gather(boxes, indices) |
|
|
|
|
|
image = data['image'] |
|
|
|
image_shape = tf.shape(input=image)[0:2] |
|
|
|
|
|
image = input_utils.normalize_image(image) |
|
|
|
|
|
if self._aug_rand_hflip: |
|
image, boxes = input_utils.random_horizontal_flip(image, boxes) |
|
|
|
|
|
boxes = box_utils.denormalize_boxes(boxes, image_shape) |
|
|
|
|
|
image, image_info = input_utils.resize_and_crop_image( |
|
image, |
|
self._output_size, |
|
padded_size=input_utils.compute_padded_size( |
|
self._output_size, 2 ** self._max_level), |
|
aug_scale_min=self._aug_scale_min, |
|
aug_scale_max=self._aug_scale_max) |
|
image_height, image_width, _ = image.get_shape().as_list() |
|
|
|
|
|
image_scale = image_info[2, :] |
|
offset = image_info[3, :] |
|
boxes = input_utils.resize_and_crop_boxes( |
|
boxes, image_scale, image_info[1, :], offset) |
|
|
|
indices = box_utils.get_non_empty_box_indices(boxes) |
|
boxes = tf.gather(boxes, indices) |
|
classes = tf.gather(classes, indices) |
|
|
|
|
|
input_anchor = anchor.Anchor( |
|
self._min_level, self._max_level, self._num_scales, |
|
self._aspect_ratios, self._anchor_size, (image_height, image_width)) |
|
anchor_labeler = anchor.AnchorLabeler( |
|
input_anchor, self._match_threshold, self._unmatched_threshold) |
|
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( |
|
boxes, |
|
tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) |
|
|
|
|
|
if self._use_bfloat16: |
|
image = tf.cast(image, dtype=tf.bfloat16) |
|
|
|
|
|
labels = { |
|
'cls_targets': cls_targets, |
|
'box_targets': box_targets, |
|
'anchor_boxes': input_anchor.multilevel_boxes, |
|
'num_positives': num_positives, |
|
'image_info': image_info, |
|
} |
|
return image, labels |
|
|
|
def _parse_eval_data(self, data): |
|
"""Parses data for training and evaluation.""" |
|
groundtruths = {} |
|
classes = data['groundtruth_classes'] |
|
boxes = data['groundtruth_boxes'] |
|
|
|
|
|
image = data['image'] |
|
image_shape = tf.shape(input=image)[0:2] |
|
|
|
|
|
image = input_utils.normalize_image(image) |
|
|
|
|
|
boxes = box_utils.denormalize_boxes(boxes, image_shape) |
|
|
|
|
|
image, image_info = input_utils.resize_and_crop_image( |
|
image, |
|
self._output_size, |
|
padded_size=input_utils.compute_padded_size( |
|
self._output_size, 2 ** self._max_level), |
|
aug_scale_min=1.0, |
|
aug_scale_max=1.0) |
|
image_height, image_width, _ = image.get_shape().as_list() |
|
|
|
|
|
image_scale = image_info[2, :] |
|
offset = image_info[3, :] |
|
boxes = input_utils.resize_and_crop_boxes( |
|
boxes, image_scale, image_info[1, :], offset) |
|
|
|
indices = box_utils.get_non_empty_box_indices(boxes) |
|
boxes = tf.gather(boxes, indices) |
|
classes = tf.gather(classes, indices) |
|
|
|
|
|
input_anchor = anchor.Anchor( |
|
self._min_level, self._max_level, self._num_scales, |
|
self._aspect_ratios, self._anchor_size, (image_height, image_width)) |
|
anchor_labeler = anchor.AnchorLabeler( |
|
input_anchor, self._match_threshold, self._unmatched_threshold) |
|
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( |
|
boxes, |
|
tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) |
|
|
|
|
|
if self._use_bfloat16: |
|
image = tf.cast(image, dtype=tf.bfloat16) |
|
|
|
|
|
groundtruths = { |
|
'source_id': data['source_id'], |
|
'num_groundtrtuhs': tf.shape(data['groundtruth_classes']), |
|
'image_info': image_info, |
|
'boxes': box_utils.denormalize_boxes( |
|
data['groundtruth_boxes'], image_shape), |
|
'classes': data['groundtruth_classes'], |
|
'areas': data['groundtruth_area'], |
|
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), |
|
} |
|
groundtruths['source_id'] = process_source_id(groundtruths['source_id']) |
|
groundtruths = pad_groundtruths_to_fixed_size( |
|
groundtruths, self._max_num_instances) |
|
|
|
|
|
labels = { |
|
'cls_targets': cls_targets, |
|
'box_targets': box_targets, |
|
'anchor_boxes': input_anchor.multilevel_boxes, |
|
'num_positives': num_positives, |
|
'image_info': image_info, |
|
'groundtruths': groundtruths, |
|
} |
|
return image, labels |
|
|
|
def _parse_predict_data(self, data): |
|
"""Parses data for prediction.""" |
|
|
|
image = data['image'] |
|
image_shape = tf.shape(input=image)[0:2] |
|
|
|
|
|
image = input_utils.normalize_image(image) |
|
|
|
|
|
image, image_info = input_utils.resize_and_crop_image( |
|
image, |
|
self._output_size, |
|
padded_size=input_utils.compute_padded_size( |
|
self._output_size, 2 ** self._max_level), |
|
aug_scale_min=1.0, |
|
aug_scale_max=1.0) |
|
image_height, image_width, _ = image.get_shape().as_list() |
|
|
|
|
|
if self._use_bfloat16: |
|
image = tf.cast(image, dtype=tf.bfloat16) |
|
|
|
|
|
input_anchor = anchor.Anchor( |
|
self._min_level, self._max_level, self._num_scales, |
|
self._aspect_ratios, self._anchor_size, (image_height, image_width)) |
|
|
|
labels = { |
|
'anchor_boxes': input_anchor.multilevel_boxes, |
|
'image_info': image_info, |
|
} |
|
|
|
|
|
if self._mode == ModeKeys.PREDICT_WITH_GT: |
|
|
|
boxes = box_utils.denormalize_boxes( |
|
data['groundtruth_boxes'], image_shape) |
|
groundtruths = { |
|
'source_id': data['source_id'], |
|
'num_detections': tf.shape(data['groundtruth_classes']), |
|
'boxes': boxes, |
|
'classes': data['groundtruth_classes'], |
|
'areas': data['groundtruth_area'], |
|
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), |
|
} |
|
groundtruths['source_id'] = process_source_id(groundtruths['source_id']) |
|
groundtruths = pad_groundtruths_to_fixed_size( |
|
groundtruths, self._max_num_instances) |
|
labels['groundtruths'] = groundtruths |
|
|
|
|
|
classes = data['groundtruth_classes'] |
|
|
|
image_scale = image_info[2, :] |
|
offset = image_info[3, :] |
|
boxes = input_utils.resize_and_crop_boxes( |
|
boxes, image_scale, image_info[1, :], offset) |
|
|
|
indices = box_utils.get_non_empty_box_indices(boxes) |
|
boxes = tf.gather(boxes, indices) |
|
|
|
|
|
anchor_labeler = anchor.AnchorLabeler( |
|
input_anchor, self._match_threshold, self._unmatched_threshold) |
|
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( |
|
boxes, |
|
tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) |
|
labels['cls_targets'] = cls_targets |
|
labels['box_targets'] = box_targets |
|
labels['num_positives'] = num_positives |
|
return image, labels |
|
|