|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Program which runs evaluation of Imagenet 64x64 and TinyImagenet models.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import os |
|
|
|
from absl import app |
|
from absl import flags |
|
|
|
import tensorflow as tf |
|
|
|
import adversarial_attack |
|
import model_lib |
|
from datasets import dataset_factory |
|
|
|
FLAGS = flags.FLAGS |
|
|
|
|
|
flags.DEFINE_string('train_dir', None, |
|
'Training directory. If specified then this program ' |
|
'runs in continuous evaluation mode.') |
|
|
|
flags.DEFINE_string('checkpoint_path', None, |
|
'Path to the file with checkpoint. If specified then ' |
|
'this program evaluates only provided checkpoint one time.') |
|
|
|
flags.DEFINE_string('output_file', None, |
|
'Name of output file. Used only in single evaluation mode.') |
|
|
|
flags.DEFINE_string('eval_name', 'default', 'Name for eval subdirectory.') |
|
|
|
flags.DEFINE_string('master', '', 'Tensorflow master.') |
|
|
|
flags.DEFINE_string('model_name', 'resnet_v2_50', 'Name of the model.') |
|
|
|
flags.DEFINE_string('adv_method', 'clean', |
|
'Method which is used to generate adversarial examples.') |
|
|
|
flags.DEFINE_string('dataset', 'imagenet', |
|
'Dataset: "tiny_imagenet" or "imagenet".') |
|
|
|
flags.DEFINE_integer('dataset_image_size', 64, |
|
'Size of the images in the dataset.') |
|
|
|
flags.DEFINE_string('hparams', '', 'Hyper parameters.') |
|
|
|
flags.DEFINE_string('split_name', 'validation', 'Name of the split.') |
|
|
|
flags.DEFINE_float('moving_average_decay', 0.9999, |
|
'The decay to use for the moving average.') |
|
|
|
flags.DEFINE_integer('eval_interval_secs', 120, |
|
'The frequency, in seconds, with which evaluation is run.') |
|
|
|
flags.DEFINE_integer( |
|
'num_examples', -1, |
|
'If positive - maximum number of example to use for evaluation.') |
|
|
|
flags.DEFINE_bool('eval_once', False, |
|
'If true then evaluate model only once.') |
|
|
|
flags.DEFINE_string('trainable_scopes', None, |
|
'If set then it defines list of variable scopes for ' |
|
'trainable variables.') |
|
|
|
|
|
def main(_): |
|
if not FLAGS.train_dir and not FLAGS.checkpoint_path: |
|
print('Either --train_dir or --checkpoint_path flags has to be provided.') |
|
if FLAGS.train_dir and FLAGS.checkpoint_path: |
|
print('Only one of --train_dir or --checkpoint_path should be provided.') |
|
params = model_lib.default_hparams() |
|
params.parse(FLAGS.hparams) |
|
tf.logging.info('User provided hparams: %s', FLAGS.hparams) |
|
tf.logging.info('All hyper parameters: %s', params) |
|
batch_size = params.eval_batch_size |
|
graph = tf.Graph() |
|
with graph.as_default(): |
|
|
|
dataset, num_examples, num_classes, bounds = dataset_factory.get_dataset( |
|
FLAGS.dataset, |
|
FLAGS.split_name, |
|
batch_size, |
|
FLAGS.dataset_image_size, |
|
is_training=False) |
|
dataset_iterator = dataset.make_one_shot_iterator() |
|
images, labels = dataset_iterator.get_next() |
|
if FLAGS.num_examples > 0: |
|
num_examples = min(num_examples, FLAGS.num_examples) |
|
|
|
|
|
global_step = tf.train.get_or_create_global_step() |
|
model_fn_two_args = model_lib.get_model(FLAGS.model_name, num_classes) |
|
model_fn = lambda x: model_fn_two_args(x, is_training=False) |
|
if not FLAGS.adv_method or FLAGS.adv_method == 'clean': |
|
logits = model_fn(images) |
|
else: |
|
adv_examples = adversarial_attack.generate_adversarial_examples( |
|
images, bounds, model_fn, FLAGS.adv_method) |
|
logits = model_fn(adv_examples) |
|
|
|
|
|
model_lib.filter_trainable_variables(FLAGS.trainable_scopes) |
|
|
|
|
|
if FLAGS.moving_average_decay and (FLAGS.moving_average_decay > 0): |
|
variable_averages = tf.train.ExponentialMovingAverage( |
|
FLAGS.moving_average_decay, global_step) |
|
variables_to_restore = variable_averages.variables_to_restore( |
|
tf.contrib.framework.get_model_variables()) |
|
variables_to_restore[global_step.op.name] = global_step |
|
else: |
|
variables_to_restore = tf.contrib.framework.get_variables_to_restore() |
|
|
|
|
|
with tf.name_scope('Eval'): |
|
names_to_values, names_to_updates = ( |
|
tf.contrib.metrics.aggregate_metric_map({ |
|
'Accuracy': tf.metrics.accuracy(labels, tf.argmax(logits, 1)), |
|
'Top5': tf.metrics.recall_at_k(tf.to_int64(labels), logits, 5) |
|
})) |
|
|
|
for name, value in names_to_values.iteritems(): |
|
tf.summary.scalar(name, value) |
|
|
|
|
|
num_batches = int(num_examples / batch_size) |
|
if FLAGS.train_dir: |
|
output_dir = os.path.join(FLAGS.train_dir, FLAGS.eval_name) |
|
if not tf.gfile.Exists(output_dir): |
|
tf.gfile.MakeDirs(output_dir) |
|
tf.contrib.training.evaluate_repeatedly( |
|
FLAGS.train_dir, |
|
master=FLAGS.master, |
|
scaffold=tf.train.Scaffold( |
|
saver=tf.train.Saver(variables_to_restore)), |
|
eval_ops=names_to_updates.values(), |
|
eval_interval_secs=FLAGS.eval_interval_secs, |
|
hooks=[ |
|
tf.contrib.training.StopAfterNEvalsHook(num_batches), |
|
tf.contrib.training.SummaryAtEndHook(output_dir), |
|
tf.train.LoggingTensorHook(names_to_values, at_end=True), |
|
], |
|
max_number_of_evaluations=1 if FLAGS.eval_once else None) |
|
else: |
|
result = tf.contrib.training.evaluate_once( |
|
FLAGS.checkpoint_path, |
|
master=FLAGS.master, |
|
scaffold=tf.train.Scaffold( |
|
saver=tf.train.Saver(variables_to_restore)), |
|
eval_ops=names_to_updates.values(), |
|
final_ops=names_to_values, |
|
hooks=[ |
|
tf.contrib.training.StopAfterNEvalsHook(num_batches), |
|
tf.train.LoggingTensorHook(names_to_values, at_end=True), |
|
]) |
|
if FLAGS.output_file: |
|
with tf.gfile.Open(FLAGS.output_file, 'a') as f: |
|
f.write('%s,%.3f,%.3f\n' |
|
% (FLAGS.eval_name, result['Accuracy'], result['Top5'])) |
|
|
|
|
|
if __name__ == '__main__': |
|
app.run(main) |
|
|