NCTCMumbai's picture
Upload 2583 files
97b6013 verified
# -*- coding: utf-8 -*-
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Configuration to read FSNS dataset https://goo.gl/3Ldm8v."""
import os
import re
import tensorflow as tf
from tensorflow.contrib import slim
import logging
DEFAULT_DATASET_DIR = os.path.join(os.path.dirname(__file__), 'data', 'fsns')
# The dataset configuration, should be used only as a default value.
DEFAULT_CONFIG = {
'name': 'FSNS',
'splits': {
'train': {
'size': 1044868,
'pattern': 'train/train*'
},
'test': {
'size': 20404,
'pattern': 'test/test*'
},
'validation': {
'size': 16150,
'pattern': 'validation/validation*'
}
},
'charset_filename': 'charset_size=134.txt',
'image_shape': (150, 600, 3),
'num_of_views': 4,
'max_sequence_length': 37,
'null_code': 133,
'items_to_descriptions': {
'image': 'A [150 x 600 x 3] color image.',
'label': 'Characters codes.',
'text': 'A unicode string.',
'length': 'A length of the encoded text.',
'num_of_views': 'A number of different views stored within the image.'
}
}
def read_charset(filename, null_character=u'\u2591'):
"""Reads a charset definition from a tab separated text file.
charset file has to have format compatible with the FSNS dataset.
Args:
filename: a path to the charset file.
null_character: a unicode character used to replace '<null>' character. the
default value is a light shade block '░'.
Returns:
a dictionary with keys equal to character codes and values - unicode
characters.
"""
pattern = re.compile(r'(\d+)\t(.+)')
charset = {}
with tf.gfile.GFile(filename) as f:
for i, line in enumerate(f):
m = pattern.match(line)
if m is None:
logging.warning('incorrect charset file. line #%d: %s', i, line)
continue
code = int(m.group(1))
char = m.group(2)
if char == '<nul>':
char = null_character
charset[code] = char
return charset
class _NumOfViewsHandler(slim.tfexample_decoder.ItemHandler):
"""Convenience handler to determine number of views stored in an image."""
def __init__(self, width_key, original_width_key, num_of_views):
super(_NumOfViewsHandler, self).__init__([width_key, original_width_key])
self._width_key = width_key
self._original_width_key = original_width_key
self._num_of_views = num_of_views
def tensors_to_item(self, keys_to_tensors):
return tf.to_int64(
self._num_of_views * keys_to_tensors[self._original_width_key] /
keys_to_tensors[self._width_key])
def get_split(split_name, dataset_dir=None, config=None):
"""Returns a dataset tuple for FSNS dataset.
Args:
split_name: A train/test split name.
dataset_dir: The base directory of the dataset sources, by default it uses
a predefined CNS path (see DEFAULT_DATASET_DIR).
config: A dictionary with dataset configuration. If None - will use the
DEFAULT_CONFIG.
Returns:
A `Dataset` namedtuple.
Raises:
ValueError: if `split_name` is not a valid train/test split.
"""
if not dataset_dir:
dataset_dir = DEFAULT_DATASET_DIR
if not config:
config = DEFAULT_CONFIG
if split_name not in config['splits']:
raise ValueError('split name %s was not recognized.' % split_name)
logging.info('Using %s dataset split_name=%s dataset_dir=%s', config['name'],
split_name, dataset_dir)
# Ignores the 'image/height' feature.
zero = tf.zeros([1], dtype=tf.int64)
keys_to_features = {
'image/encoded':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/format':
tf.FixedLenFeature((), tf.string, default_value='png'),
'image/width':
tf.FixedLenFeature([1], tf.int64, default_value=zero),
'image/orig_width':
tf.FixedLenFeature([1], tf.int64, default_value=zero),
'image/class':
tf.FixedLenFeature([config['max_sequence_length']], tf.int64),
'image/unpadded_class':
tf.VarLenFeature(tf.int64),
'image/text':
tf.FixedLenFeature([1], tf.string, default_value=''),
}
items_to_handlers = {
'image':
slim.tfexample_decoder.Image(
shape=config['image_shape'],
image_key='image/encoded',
format_key='image/format'),
'label':
slim.tfexample_decoder.Tensor(tensor_key='image/class'),
'text':
slim.tfexample_decoder.Tensor(tensor_key='image/text'),
'num_of_views':
_NumOfViewsHandler(
width_key='image/width',
original_width_key='image/orig_width',
num_of_views=config['num_of_views'])
}
decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
charset_file = os.path.join(dataset_dir, config['charset_filename'])
charset = read_charset(charset_file)
file_pattern = os.path.join(dataset_dir,
config['splits'][split_name]['pattern'])
return slim.dataset.Dataset(
data_sources=file_pattern,
reader=tf.TFRecordReader,
decoder=decoder,
num_samples=config['splits'][split_name]['size'],
items_to_descriptions=config['items_to_descriptions'],
# additional parameters for convenience.
charset=charset,
num_char_classes=len(charset),
num_of_views=config['num_of_views'],
max_sequence_length=config['max_sequence_length'],
null_code=config['null_code'])