|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Python implementation of MS-SSIM. |
|
|
|
Usage: |
|
|
|
python msssim.py --original_image=original.png --compared_image=distorted.png |
|
""" |
|
import numpy as np |
|
from scipy import signal |
|
from scipy.ndimage.filters import convolve |
|
import tensorflow as tf |
|
|
|
|
|
tf.flags.DEFINE_string('original_image', None, 'Path to PNG image.') |
|
tf.flags.DEFINE_string('compared_image', None, 'Path to PNG image.') |
|
FLAGS = tf.flags.FLAGS |
|
|
|
|
|
def _FSpecialGauss(size, sigma): |
|
"""Function to mimic the 'fspecial' gaussian MATLAB function.""" |
|
radius = size // 2 |
|
offset = 0.0 |
|
start, stop = -radius, radius + 1 |
|
if size % 2 == 0: |
|
offset = 0.5 |
|
stop -= 1 |
|
x, y = np.mgrid[offset + start:stop, offset + start:stop] |
|
assert len(x) == size |
|
g = np.exp(-((x**2 + y**2)/(2.0 * sigma**2))) |
|
return g / g.sum() |
|
|
|
|
|
def _SSIMForMultiScale(img1, img2, max_val=255, filter_size=11, |
|
filter_sigma=1.5, k1=0.01, k2=0.03): |
|
"""Return the Structural Similarity Map between `img1` and `img2`. |
|
|
|
This function attempts to match the functionality of ssim_index_new.m by |
|
Zhou Wang: http://www.cns.nyu.edu/~lcv/ssim/msssim.zip |
|
|
|
Arguments: |
|
img1: Numpy array holding the first RGB image batch. |
|
img2: Numpy array holding the second RGB image batch. |
|
max_val: the dynamic range of the images (i.e., the difference between the |
|
maximum the and minimum allowed values). |
|
filter_size: Size of blur kernel to use (will be reduced for small images). |
|
filter_sigma: Standard deviation for Gaussian blur kernel (will be reduced |
|
for small images). |
|
k1: Constant used to maintain stability in the SSIM calculation (0.01 in |
|
the original paper). |
|
k2: Constant used to maintain stability in the SSIM calculation (0.03 in |
|
the original paper). |
|
|
|
Returns: |
|
Pair containing the mean SSIM and contrast sensitivity between `img1` and |
|
`img2`. |
|
|
|
Raises: |
|
RuntimeError: If input images don't have the same shape or don't have four |
|
dimensions: [batch_size, height, width, depth]. |
|
""" |
|
if img1.shape != img2.shape: |
|
raise RuntimeError('Input images must have the same shape (%s vs. %s).', |
|
img1.shape, img2.shape) |
|
if img1.ndim != 4: |
|
raise RuntimeError('Input images must have four dimensions, not %d', |
|
img1.ndim) |
|
|
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
_, height, width, _ = img1.shape |
|
|
|
|
|
size = min(filter_size, height, width) |
|
|
|
|
|
sigma = size * filter_sigma / filter_size if filter_size else 0 |
|
|
|
if filter_size: |
|
window = np.reshape(_FSpecialGauss(size, sigma), (1, size, size, 1)) |
|
mu1 = signal.fftconvolve(img1, window, mode='valid') |
|
mu2 = signal.fftconvolve(img2, window, mode='valid') |
|
sigma11 = signal.fftconvolve(img1 * img1, window, mode='valid') |
|
sigma22 = signal.fftconvolve(img2 * img2, window, mode='valid') |
|
sigma12 = signal.fftconvolve(img1 * img2, window, mode='valid') |
|
else: |
|
|
|
mu1, mu2 = img1, img2 |
|
sigma11 = img1 * img1 |
|
sigma22 = img2 * img2 |
|
sigma12 = img1 * img2 |
|
|
|
mu11 = mu1 * mu1 |
|
mu22 = mu2 * mu2 |
|
mu12 = mu1 * mu2 |
|
sigma11 -= mu11 |
|
sigma22 -= mu22 |
|
sigma12 -= mu12 |
|
|
|
|
|
c1 = (k1 * max_val) ** 2 |
|
c2 = (k2 * max_val) ** 2 |
|
v1 = 2.0 * sigma12 + c2 |
|
v2 = sigma11 + sigma22 + c2 |
|
ssim = np.mean((((2.0 * mu12 + c1) * v1) / ((mu11 + mu22 + c1) * v2))) |
|
cs = np.mean(v1 / v2) |
|
return ssim, cs |
|
|
|
|
|
def MultiScaleSSIM(img1, img2, max_val=255, filter_size=11, filter_sigma=1.5, |
|
k1=0.01, k2=0.03, weights=None): |
|
"""Return the MS-SSIM score between `img1` and `img2`. |
|
|
|
This function implements Multi-Scale Structural Similarity (MS-SSIM) Image |
|
Quality Assessment according to Zhou Wang's paper, "Multi-scale structural |
|
similarity for image quality assessment" (2003). |
|
Link: https://ece.uwaterloo.ca/~z70wang/publications/msssim.pdf |
|
|
|
Author's MATLAB implementation: |
|
http://www.cns.nyu.edu/~lcv/ssim/msssim.zip |
|
|
|
Arguments: |
|
img1: Numpy array holding the first RGB image batch. |
|
img2: Numpy array holding the second RGB image batch. |
|
max_val: the dynamic range of the images (i.e., the difference between the |
|
maximum the and minimum allowed values). |
|
filter_size: Size of blur kernel to use (will be reduced for small images). |
|
filter_sigma: Standard deviation for Gaussian blur kernel (will be reduced |
|
for small images). |
|
k1: Constant used to maintain stability in the SSIM calculation (0.01 in |
|
the original paper). |
|
k2: Constant used to maintain stability in the SSIM calculation (0.03 in |
|
the original paper). |
|
weights: List of weights for each level; if none, use five levels and the |
|
weights from the original paper. |
|
|
|
Returns: |
|
MS-SSIM score between `img1` and `img2`. |
|
|
|
Raises: |
|
RuntimeError: If input images don't have the same shape or don't have four |
|
dimensions: [batch_size, height, width, depth]. |
|
""" |
|
if img1.shape != img2.shape: |
|
raise RuntimeError('Input images must have the same shape (%s vs. %s).', |
|
img1.shape, img2.shape) |
|
if img1.ndim != 4: |
|
raise RuntimeError('Input images must have four dimensions, not %d', |
|
img1.ndim) |
|
|
|
|
|
weights = np.array(weights if weights else |
|
[0.0448, 0.2856, 0.3001, 0.2363, 0.1333]) |
|
levels = weights.size |
|
downsample_filter = np.ones((1, 2, 2, 1)) / 4.0 |
|
im1, im2 = [x.astype(np.float64) for x in [img1, img2]] |
|
mssim = np.array([]) |
|
mcs = np.array([]) |
|
for _ in range(levels): |
|
ssim, cs = _SSIMForMultiScale( |
|
im1, im2, max_val=max_val, filter_size=filter_size, |
|
filter_sigma=filter_sigma, k1=k1, k2=k2) |
|
mssim = np.append(mssim, ssim) |
|
mcs = np.append(mcs, cs) |
|
filtered = [convolve(im, downsample_filter, mode='reflect') |
|
for im in [im1, im2]] |
|
im1, im2 = [x[:, ::2, ::2, :] for x in filtered] |
|
return (np.prod(mcs[0:levels-1] ** weights[0:levels-1]) * |
|
(mssim[levels-1] ** weights[levels-1])) |
|
|
|
|
|
def main(_): |
|
if FLAGS.original_image is None or FLAGS.compared_image is None: |
|
print('\nUsage: python msssim.py --original_image=original.png ' |
|
'--compared_image=distorted.png\n\n') |
|
return |
|
|
|
if not tf.gfile.Exists(FLAGS.original_image): |
|
print('\nCannot find --original_image.\n') |
|
return |
|
|
|
if not tf.gfile.Exists(FLAGS.compared_image): |
|
print('\nCannot find --compared_image.\n') |
|
return |
|
|
|
with tf.gfile.FastGFile(FLAGS.original_image) as image_file: |
|
img1_str = image_file.read('rb') |
|
with tf.gfile.FastGFile(FLAGS.compared_image) as image_file: |
|
img2_str = image_file.read('rb') |
|
|
|
input_img = tf.placeholder(tf.string) |
|
decoded_image = tf.expand_dims(tf.image.decode_png(input_img, channels=3), 0) |
|
|
|
with tf.Session() as sess: |
|
img1 = sess.run(decoded_image, feed_dict={input_img: img1_str}) |
|
img2 = sess.run(decoded_image, feed_dict={input_img: img2_str}) |
|
|
|
print((MultiScaleSSIM(img1, img2, max_val=255))) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.app.run() |
|
|