Spaces:
Building
Building
# Lint as: python2, python3 | |
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Converts Cityscapes data to TFRecord file format with Example protos. | |
The Cityscapes dataset is expected to have the following directory structure: | |
+ cityscapes | |
- build_cityscapes_data.py (current working directiory). | |
- build_data.py | |
+ cityscapesscripts | |
+ annotation | |
+ evaluation | |
+ helpers | |
+ preparation | |
+ viewer | |
+ gtFine | |
+ train | |
+ val | |
+ test | |
+ leftImg8bit | |
+ train | |
+ val | |
+ test | |
+ tfrecord | |
This script converts data into sharded data files and save at tfrecord folder. | |
Note that before running this script, the users should (1) register the | |
Cityscapes dataset website at https://www.cityscapes-dataset.com to | |
download the dataset, and (2) run the script provided by Cityscapes | |
`preparation/createTrainIdLabelImgs.py` to generate the training groundtruth. | |
Also note that the tensorflow model will be trained with `TrainId' instead | |
of `EvalId' used on the evaluation server. Thus, the users need to convert | |
the predicted labels to `EvalId` for evaluation on the server. See the | |
vis.py for more details. | |
The Example proto contains the following fields: | |
image/encoded: encoded image content. | |
image/filename: image filename. | |
image/format: image file format. | |
image/height: image height. | |
image/width: image width. | |
image/channels: image channels. | |
image/segmentation/class/encoded: encoded semantic segmentation content. | |
image/segmentation/class/format: semantic segmentation file format. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import glob | |
import math | |
import os.path | |
import re | |
import sys | |
import build_data | |
from six.moves import range | |
import tensorflow as tf | |
FLAGS = tf.app.flags.FLAGS | |
tf.app.flags.DEFINE_string('cityscapes_root', | |
'./cityscapes', | |
'Cityscapes dataset root folder.') | |
tf.app.flags.DEFINE_string( | |
'output_dir', | |
'./tfrecord', | |
'Path to save converted SSTable of TensorFlow examples.') | |
_NUM_SHARDS = 10 | |
# A map from data type to folder name that saves the data. | |
_FOLDERS_MAP = { | |
'image': 'leftImg8bit', | |
'label': 'gtFine', | |
} | |
# A map from data type to filename postfix. | |
_POSTFIX_MAP = { | |
'image': '_leftImg8bit', | |
'label': '_gtFine_labelTrainIds', | |
} | |
# A map from data type to data format. | |
_DATA_FORMAT_MAP = { | |
'image': 'png', | |
'label': 'png', | |
} | |
# Image file pattern. | |
_IMAGE_FILENAME_RE = re.compile('(.+)' + _POSTFIX_MAP['image']) | |
def _get_files(data, dataset_split): | |
"""Gets files for the specified data type and dataset split. | |
Args: | |
data: String, desired data ('image' or 'label'). | |
dataset_split: String, dataset split ('train', 'val', 'test') | |
Returns: | |
A list of sorted file names or None when getting label for | |
test set. | |
""" | |
if data == 'label' and dataset_split == 'test': | |
return None | |
pattern = '*%s.%s' % (_POSTFIX_MAP[data], _DATA_FORMAT_MAP[data]) | |
search_files = os.path.join( | |
FLAGS.cityscapes_root, _FOLDERS_MAP[data], dataset_split, '*', pattern) | |
filenames = glob.glob(search_files) | |
return sorted(filenames) | |
def _convert_dataset(dataset_split): | |
"""Converts the specified dataset split to TFRecord format. | |
Args: | |
dataset_split: The dataset split (e.g., train, val). | |
Raises: | |
RuntimeError: If loaded image and label have different shape, or if the | |
image file with specified postfix could not be found. | |
""" | |
image_files = _get_files('image', dataset_split) | |
label_files = _get_files('label', dataset_split) | |
num_images = len(image_files) | |
num_per_shard = int(math.ceil(num_images / _NUM_SHARDS)) | |
image_reader = build_data.ImageReader('png', channels=3) | |
label_reader = build_data.ImageReader('png', channels=1) | |
for shard_id in range(_NUM_SHARDS): | |
shard_filename = '%s-%05d-of-%05d.tfrecord' % ( | |
dataset_split, shard_id, _NUM_SHARDS) | |
output_filename = os.path.join(FLAGS.output_dir, shard_filename) | |
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: | |
start_idx = shard_id * num_per_shard | |
end_idx = min((shard_id + 1) * num_per_shard, num_images) | |
for i in range(start_idx, end_idx): | |
sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( | |
i + 1, num_images, shard_id)) | |
sys.stdout.flush() | |
# Read the image. | |
image_data = tf.gfile.FastGFile(image_files[i], 'rb').read() | |
height, width = image_reader.read_image_dims(image_data) | |
# Read the semantic segmentation annotation. | |
seg_data = tf.gfile.FastGFile(label_files[i], 'rb').read() | |
seg_height, seg_width = label_reader.read_image_dims(seg_data) | |
if height != seg_height or width != seg_width: | |
raise RuntimeError('Shape mismatched between image and label.') | |
# Convert to tf example. | |
re_match = _IMAGE_FILENAME_RE.search(image_files[i]) | |
if re_match is None: | |
raise RuntimeError('Invalid image filename: ' + image_files[i]) | |
filename = os.path.basename(re_match.group(1)) | |
example = build_data.image_seg_to_tfexample( | |
image_data, filename, height, width, seg_data) | |
tfrecord_writer.write(example.SerializeToString()) | |
sys.stdout.write('\n') | |
sys.stdout.flush() | |
def main(unused_argv): | |
# Only support converting 'train' and 'val' sets for now. | |
for dataset_split in ['train', 'val']: | |
_convert_dataset(dataset_split) | |
if __name__ == '__main__': | |
tf.app.run() | |