Spaces:
Building
Building
# Lint as: python2, python3 | |
# Copyright 2019 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for segmentation "streaming" metrics.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import collections | |
import numpy as np | |
import six | |
import tensorflow as tf | |
from deeplab.evaluation import streaming_metrics | |
from deeplab.evaluation import test_utils | |
# See the definition of the color names at: | |
# https://en.wikipedia.org/wiki/Web_colors. | |
_CLASS_COLOR_MAP = { | |
(0, 0, 0): 0, | |
(0, 0, 255): 1, # Person (blue). | |
(255, 0, 0): 2, # Bear (red). | |
(0, 255, 0): 3, # Tree (lime). | |
(255, 0, 255): 4, # Bird (fuchsia). | |
(0, 255, 255): 5, # Sky (aqua). | |
(255, 255, 0): 6, # Cat (yellow). | |
} | |
class StreamingPanopticQualityTest(tf.test.TestCase): | |
def test_streaming_metric_on_single_image(self): | |
offset = 256 * 256 | |
instance_class_map = { | |
0: 0, | |
47: 1, | |
97: 1, | |
133: 1, | |
150: 1, | |
174: 1, | |
198: 2, | |
215: 1, | |
244: 1, | |
255: 1, | |
} | |
gt_instances, gt_classes = test_utils.panoptic_segmentation_with_class_map( | |
'team_gt_instance.png', instance_class_map) | |
pred_classes = test_utils.read_segmentation_with_rgb_color_map( | |
'team_pred_class.png', _CLASS_COLOR_MAP) | |
pred_instances = test_utils.read_test_image( | |
'team_pred_instance.png', mode='L') | |
gt_class_tensor = tf.placeholder(tf.uint16) | |
gt_instance_tensor = tf.placeholder(tf.uint16) | |
pred_class_tensor = tf.placeholder(tf.uint16) | |
pred_instance_tensor = tf.placeholder(tf.uint16) | |
qualities, update_pq = streaming_metrics.streaming_panoptic_quality( | |
gt_class_tensor, | |
gt_instance_tensor, | |
pred_class_tensor, | |
pred_instance_tensor, | |
num_classes=3, | |
max_instances_per_category=256, | |
ignored_label=0, | |
offset=offset) | |
pq, sq, rq, total_tp, total_fn, total_fp = tf.unstack(qualities, 6, axis=0) | |
feed_dict = { | |
gt_class_tensor: gt_classes, | |
gt_instance_tensor: gt_instances, | |
pred_class_tensor: pred_classes, | |
pred_instance_tensor: pred_instances | |
} | |
with self.session() as sess: | |
sess.run(tf.local_variables_initializer()) | |
sess.run(update_pq, feed_dict=feed_dict) | |
(result_pq, result_sq, result_rq, result_total_tp, result_total_fn, | |
result_total_fp) = sess.run([pq, sq, rq, total_tp, total_fn, total_fp], | |
feed_dict=feed_dict) | |
np.testing.assert_array_almost_equal( | |
result_pq, [2.06104, 0.7024, 0.54069], decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_sq, [2.06104, 0.7526, 0.54069], decimal=4) | |
np.testing.assert_array_almost_equal(result_rq, [1., 0.9333, 1.], decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_total_tp, [1., 7., 1.], decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_total_fn, [0., 1., 0.], decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_total_fp, [0., 0., 0.], decimal=4) | |
def test_streaming_metric_on_multiple_images(self): | |
num_classes = 7 | |
offset = 256 * 256 | |
bird_gt_instance_class_map = { | |
92: 5, | |
176: 3, | |
255: 4, | |
} | |
cat_gt_instance_class_map = { | |
0: 0, | |
255: 6, | |
} | |
team_gt_instance_class_map = { | |
0: 0, | |
47: 1, | |
97: 1, | |
133: 1, | |
150: 1, | |
174: 1, | |
198: 2, | |
215: 1, | |
244: 1, | |
255: 1, | |
} | |
test_image = collections.namedtuple( | |
'TestImage', | |
['gt_class_map', 'gt_path', 'pred_inst_path', 'pred_class_path']) | |
test_images = [ | |
test_image(bird_gt_instance_class_map, 'bird_gt.png', | |
'bird_pred_instance.png', 'bird_pred_class.png'), | |
test_image(cat_gt_instance_class_map, 'cat_gt.png', | |
'cat_pred_instance.png', 'cat_pred_class.png'), | |
test_image(team_gt_instance_class_map, 'team_gt_instance.png', | |
'team_pred_instance.png', 'team_pred_class.png'), | |
] | |
gt_classes = [] | |
gt_instances = [] | |
pred_classes = [] | |
pred_instances = [] | |
for test_image in test_images: | |
(image_gt_instances, | |
image_gt_classes) = test_utils.panoptic_segmentation_with_class_map( | |
test_image.gt_path, test_image.gt_class_map) | |
gt_classes.append(image_gt_classes) | |
gt_instances.append(image_gt_instances) | |
pred_classes.append( | |
test_utils.read_segmentation_with_rgb_color_map( | |
test_image.pred_class_path, _CLASS_COLOR_MAP)) | |
pred_instances.append( | |
test_utils.read_test_image(test_image.pred_inst_path, mode='L')) | |
gt_class_tensor = tf.placeholder(tf.uint16) | |
gt_instance_tensor = tf.placeholder(tf.uint16) | |
pred_class_tensor = tf.placeholder(tf.uint16) | |
pred_instance_tensor = tf.placeholder(tf.uint16) | |
qualities, update_pq = streaming_metrics.streaming_panoptic_quality( | |
gt_class_tensor, | |
gt_instance_tensor, | |
pred_class_tensor, | |
pred_instance_tensor, | |
num_classes=num_classes, | |
max_instances_per_category=256, | |
ignored_label=0, | |
offset=offset) | |
pq, sq, rq, total_tp, total_fn, total_fp = tf.unstack(qualities, 6, axis=0) | |
with self.session() as sess: | |
sess.run(tf.local_variables_initializer()) | |
for pred_class, pred_instance, gt_class, gt_instance in six.moves.zip( | |
pred_classes, pred_instances, gt_classes, gt_instances): | |
sess.run( | |
update_pq, | |
feed_dict={ | |
gt_class_tensor: gt_class, | |
gt_instance_tensor: gt_instance, | |
pred_class_tensor: pred_class, | |
pred_instance_tensor: pred_instance | |
}) | |
(result_pq, result_sq, result_rq, result_total_tp, result_total_fn, | |
result_total_fp) = sess.run( | |
[pq, sq, rq, total_tp, total_fn, total_fp], | |
feed_dict={ | |
gt_class_tensor: 0, | |
gt_instance_tensor: 0, | |
pred_class_tensor: 0, | |
pred_instance_tensor: 0 | |
}) | |
np.testing.assert_array_almost_equal( | |
result_pq, | |
[4.3107, 0.7024, 0.54069, 0.745353, 0.85768, 0.99107, 0.77410], | |
decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_sq, [5.3883, 0.7526, 0.5407, 0.7454, 0.8577, 0.9911, 0.7741], | |
decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_rq, [0.8, 0.9333, 1., 1., 1., 1., 1.], decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_total_tp, [2., 7., 1., 1., 1., 1., 1.], decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_total_fn, [0., 1., 0., 0., 0., 0., 0.], decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_total_fp, [1., 0., 0., 0., 0., 0., 0.], decimal=4) | |
class StreamingParsingCoveringTest(tf.test.TestCase): | |
def test_streaming_metric_on_single_image(self): | |
offset = 256 * 256 | |
instance_class_map = { | |
0: 0, | |
47: 1, | |
97: 1, | |
133: 1, | |
150: 1, | |
174: 1, | |
198: 2, | |
215: 1, | |
244: 1, | |
255: 1, | |
} | |
gt_instances, gt_classes = test_utils.panoptic_segmentation_with_class_map( | |
'team_gt_instance.png', instance_class_map) | |
pred_classes = test_utils.read_segmentation_with_rgb_color_map( | |
'team_pred_class.png', _CLASS_COLOR_MAP) | |
pred_instances = test_utils.read_test_image( | |
'team_pred_instance.png', mode='L') | |
gt_class_tensor = tf.placeholder(tf.uint16) | |
gt_instance_tensor = tf.placeholder(tf.uint16) | |
pred_class_tensor = tf.placeholder(tf.uint16) | |
pred_instance_tensor = tf.placeholder(tf.uint16) | |
coverings, update_ops = streaming_metrics.streaming_parsing_covering( | |
gt_class_tensor, | |
gt_instance_tensor, | |
pred_class_tensor, | |
pred_instance_tensor, | |
num_classes=3, | |
max_instances_per_category=256, | |
ignored_label=0, | |
offset=offset, | |
normalize_by_image_size=False) | |
(per_class_coverings, per_class_weighted_ious, per_class_gt_areas) = ( | |
tf.unstack(coverings, num=3, axis=0)) | |
feed_dict = { | |
gt_class_tensor: gt_classes, | |
gt_instance_tensor: gt_instances, | |
pred_class_tensor: pred_classes, | |
pred_instance_tensor: pred_instances | |
} | |
with self.session() as sess: | |
sess.run(tf.local_variables_initializer()) | |
sess.run(update_ops, feed_dict=feed_dict) | |
(result_per_class_coverings, result_per_class_weighted_ious, | |
result_per_class_gt_areas) = ( | |
sess.run([ | |
per_class_coverings, | |
per_class_weighted_ious, | |
per_class_gt_areas, | |
], | |
feed_dict=feed_dict)) | |
np.testing.assert_array_almost_equal( | |
result_per_class_coverings, [0.0, 0.7009696912, 0.5406896552], | |
decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_per_class_weighted_ious, [0.0, 39864.14634, 3136], decimal=4) | |
np.testing.assert_array_equal(result_per_class_gt_areas, [0, 56870, 5800]) | |
def test_streaming_metric_on_multiple_images(self): | |
"""Tests streaming parsing covering metric.""" | |
num_classes = 7 | |
offset = 256 * 256 | |
bird_gt_instance_class_map = { | |
92: 5, | |
176: 3, | |
255: 4, | |
} | |
cat_gt_instance_class_map = { | |
0: 0, | |
255: 6, | |
} | |
team_gt_instance_class_map = { | |
0: 0, | |
47: 1, | |
97: 1, | |
133: 1, | |
150: 1, | |
174: 1, | |
198: 2, | |
215: 1, | |
244: 1, | |
255: 1, | |
} | |
test_image = collections.namedtuple( | |
'TestImage', | |
['gt_class_map', 'gt_path', 'pred_inst_path', 'pred_class_path']) | |
test_images = [ | |
test_image(bird_gt_instance_class_map, 'bird_gt.png', | |
'bird_pred_instance.png', 'bird_pred_class.png'), | |
test_image(cat_gt_instance_class_map, 'cat_gt.png', | |
'cat_pred_instance.png', 'cat_pred_class.png'), | |
test_image(team_gt_instance_class_map, 'team_gt_instance.png', | |
'team_pred_instance.png', 'team_pred_class.png'), | |
] | |
gt_classes = [] | |
gt_instances = [] | |
pred_classes = [] | |
pred_instances = [] | |
for test_image in test_images: | |
(image_gt_instances, | |
image_gt_classes) = test_utils.panoptic_segmentation_with_class_map( | |
test_image.gt_path, test_image.gt_class_map) | |
gt_classes.append(image_gt_classes) | |
gt_instances.append(image_gt_instances) | |
pred_instances.append( | |
test_utils.read_test_image(test_image.pred_inst_path, mode='L')) | |
pred_classes.append( | |
test_utils.read_segmentation_with_rgb_color_map( | |
test_image.pred_class_path, _CLASS_COLOR_MAP)) | |
gt_class_tensor = tf.placeholder(tf.uint16) | |
gt_instance_tensor = tf.placeholder(tf.uint16) | |
pred_class_tensor = tf.placeholder(tf.uint16) | |
pred_instance_tensor = tf.placeholder(tf.uint16) | |
coverings, update_ops = streaming_metrics.streaming_parsing_covering( | |
gt_class_tensor, | |
gt_instance_tensor, | |
pred_class_tensor, | |
pred_instance_tensor, | |
num_classes=num_classes, | |
max_instances_per_category=256, | |
ignored_label=0, | |
offset=offset, | |
normalize_by_image_size=False) | |
(per_class_coverings, per_class_weighted_ious, per_class_gt_areas) = ( | |
tf.unstack(coverings, num=3, axis=0)) | |
with self.session() as sess: | |
sess.run(tf.local_variables_initializer()) | |
for pred_class, pred_instance, gt_class, gt_instance in six.moves.zip( | |
pred_classes, pred_instances, gt_classes, gt_instances): | |
sess.run( | |
update_ops, | |
feed_dict={ | |
gt_class_tensor: gt_class, | |
gt_instance_tensor: gt_instance, | |
pred_class_tensor: pred_class, | |
pred_instance_tensor: pred_instance | |
}) | |
(result_per_class_coverings, result_per_class_weighted_ious, | |
result_per_class_gt_areas) = ( | |
sess.run( | |
[ | |
per_class_coverings, | |
per_class_weighted_ious, | |
per_class_gt_areas, | |
], | |
feed_dict={ | |
gt_class_tensor: 0, | |
gt_instance_tensor: 0, | |
pred_class_tensor: 0, | |
pred_instance_tensor: 0 | |
})) | |
np.testing.assert_array_almost_equal( | |
result_per_class_coverings, [ | |
0.0, | |
0.7009696912, | |
0.5406896552, | |
0.7453531599, | |
0.8576779026, | |
0.9910687881, | |
0.7741046032, | |
], | |
decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_per_class_weighted_ious, [ | |
0.0, | |
39864.14634, | |
3136, | |
1177.657993, | |
2498.41573, | |
33366.31289, | |
26671, | |
], | |
decimal=4) | |
np.testing.assert_array_equal(result_per_class_gt_areas, [ | |
0.0, | |
56870, | |
5800, | |
1580, | |
2913, | |
33667, | |
34454, | |
]) | |
def test_streaming_metric_on_multiple_images_normalize_by_size(self): | |
"""Tests streaming parsing covering metric with image size normalization.""" | |
num_classes = 7 | |
offset = 256 * 256 | |
bird_gt_instance_class_map = { | |
92: 5, | |
176: 3, | |
255: 4, | |
} | |
cat_gt_instance_class_map = { | |
0: 0, | |
255: 6, | |
} | |
team_gt_instance_class_map = { | |
0: 0, | |
47: 1, | |
97: 1, | |
133: 1, | |
150: 1, | |
174: 1, | |
198: 2, | |
215: 1, | |
244: 1, | |
255: 1, | |
} | |
test_image = collections.namedtuple( | |
'TestImage', | |
['gt_class_map', 'gt_path', 'pred_inst_path', 'pred_class_path']) | |
test_images = [ | |
test_image(bird_gt_instance_class_map, 'bird_gt.png', | |
'bird_pred_instance.png', 'bird_pred_class.png'), | |
test_image(cat_gt_instance_class_map, 'cat_gt.png', | |
'cat_pred_instance.png', 'cat_pred_class.png'), | |
test_image(team_gt_instance_class_map, 'team_gt_instance.png', | |
'team_pred_instance.png', 'team_pred_class.png'), | |
] | |
gt_classes = [] | |
gt_instances = [] | |
pred_classes = [] | |
pred_instances = [] | |
for test_image in test_images: | |
(image_gt_instances, | |
image_gt_classes) = test_utils.panoptic_segmentation_with_class_map( | |
test_image.gt_path, test_image.gt_class_map) | |
gt_classes.append(image_gt_classes) | |
gt_instances.append(image_gt_instances) | |
pred_instances.append( | |
test_utils.read_test_image(test_image.pred_inst_path, mode='L')) | |
pred_classes.append( | |
test_utils.read_segmentation_with_rgb_color_map( | |
test_image.pred_class_path, _CLASS_COLOR_MAP)) | |
gt_class_tensor = tf.placeholder(tf.uint16) | |
gt_instance_tensor = tf.placeholder(tf.uint16) | |
pred_class_tensor = tf.placeholder(tf.uint16) | |
pred_instance_tensor = tf.placeholder(tf.uint16) | |
coverings, update_ops = streaming_metrics.streaming_parsing_covering( | |
gt_class_tensor, | |
gt_instance_tensor, | |
pred_class_tensor, | |
pred_instance_tensor, | |
num_classes=num_classes, | |
max_instances_per_category=256, | |
ignored_label=0, | |
offset=offset, | |
normalize_by_image_size=True) | |
(per_class_coverings, per_class_weighted_ious, per_class_gt_areas) = ( | |
tf.unstack(coverings, num=3, axis=0)) | |
with self.session() as sess: | |
sess.run(tf.local_variables_initializer()) | |
for pred_class, pred_instance, gt_class, gt_instance in six.moves.zip( | |
pred_classes, pred_instances, gt_classes, gt_instances): | |
sess.run( | |
update_ops, | |
feed_dict={ | |
gt_class_tensor: gt_class, | |
gt_instance_tensor: gt_instance, | |
pred_class_tensor: pred_class, | |
pred_instance_tensor: pred_instance | |
}) | |
(result_per_class_coverings, result_per_class_weighted_ious, | |
result_per_class_gt_areas) = ( | |
sess.run( | |
[ | |
per_class_coverings, | |
per_class_weighted_ious, | |
per_class_gt_areas, | |
], | |
feed_dict={ | |
gt_class_tensor: 0, | |
gt_instance_tensor: 0, | |
pred_class_tensor: 0, | |
pred_instance_tensor: 0 | |
})) | |
np.testing.assert_array_almost_equal( | |
result_per_class_coverings, [ | |
0.0, | |
0.7009696912, | |
0.5406896552, | |
0.7453531599, | |
0.8576779026, | |
0.9910687881, | |
0.7741046032, | |
], | |
decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_per_class_weighted_ious, [ | |
0.0, | |
0.5002088756, | |
0.03935002196, | |
0.03086105851, | |
0.06547211033, | |
0.8743792686, | |
0.2549565051, | |
], | |
decimal=4) | |
np.testing.assert_array_almost_equal( | |
result_per_class_gt_areas, [ | |
0.0, | |
0.7135955832, | |
0.07277746408, | |
0.04140461216, | |
0.07633647799, | |
0.8822589099, | |
0.3293566581, | |
], | |
decimal=4) | |
if __name__ == '__main__': | |
tf.test.main() | |