Spaces:
Building
Building
# Lint as: python2, python3 | |
# Copyright 2019 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Utility functions to set up unit tests on Panoptic Segmentation code.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
from absl import flags | |
import numpy as np | |
import scipy.misc | |
import six | |
from six.moves import map | |
FLAGS = flags.FLAGS | |
_TEST_DIR = 'deeplab/evaluation/testdata' | |
def read_test_image(testdata_path, *args, **kwargs): | |
"""Loads a test image. | |
Args: | |
testdata_path: Image path relative to panoptic_segmentation/testdata as a | |
string. | |
*args: Additional positional arguments passed to `imread`. | |
**kwargs: Additional keyword arguments passed to `imread`. | |
Returns: | |
The image, as a numpy array. | |
""" | |
image_path = os.path.join(_TEST_DIR, testdata_path) | |
return scipy.misc.imread(image_path, *args, **kwargs) | |
def read_segmentation_with_rgb_color_map(image_testdata_path, | |
rgb_to_semantic_label, | |
output_dtype=None): | |
"""Reads a test segmentation as an image and a map from colors to labels. | |
Args: | |
image_testdata_path: Image path relative to panoptic_segmentation/testdata | |
as a string. | |
rgb_to_semantic_label: Mapping from RGB colors to integer labels as a | |
dictionary. | |
output_dtype: Type of the output labels. If None, defaults to the type of | |
the provided color map. | |
Returns: | |
A 2D numpy array of labels. | |
Raises: | |
ValueError: On an incomplete `rgb_to_semantic_label`. | |
""" | |
rgb_image = read_test_image(image_testdata_path, mode='RGB') | |
if len(rgb_image.shape) != 3 or rgb_image.shape[2] != 3: | |
raise AssertionError( | |
'Expected RGB image, actual shape is %s' % rgb_image.sape) | |
num_pixels = rgb_image.shape[0] * rgb_image.shape[1] | |
unique_colors = np.unique(np.reshape(rgb_image, [num_pixels, 3]), axis=0) | |
if not set(map(tuple, unique_colors)).issubset( | |
six.viewkeys(rgb_to_semantic_label)): | |
raise ValueError('RGB image has colors not in color map.') | |
output_dtype = output_dtype or type( | |
next(six.itervalues(rgb_to_semantic_label))) | |
output_labels = np.empty(rgb_image.shape[:2], dtype=output_dtype) | |
for rgb_color, int_label in six.iteritems(rgb_to_semantic_label): | |
color_array = np.array(rgb_color, ndmin=3) | |
output_labels[np.all(rgb_image == color_array, axis=2)] = int_label | |
return output_labels | |
def panoptic_segmentation_with_class_map(instance_testdata_path, | |
instance_label_to_semantic_label): | |
"""Reads in a panoptic segmentation with an instance map and a map to classes. | |
Args: | |
instance_testdata_path: Path to a grayscale instance map, given as a string | |
and relative to panoptic_segmentation/testdata. | |
instance_label_to_semantic_label: A map from instance labels to class | |
labels. | |
Returns: | |
A tuple `(instance_labels, class_labels)` of numpy arrays. | |
Raises: | |
ValueError: On a mismatched set of instances in | |
the | |
`instance_label_to_semantic_label`. | |
""" | |
instance_labels = read_test_image(instance_testdata_path, mode='L') | |
if set(np.unique(instance_labels)) != set( | |
six.iterkeys(instance_label_to_semantic_label)): | |
raise ValueError('Provided class map does not match present instance ids.') | |
class_labels = np.empty_like(instance_labels) | |
for instance_id, class_id in six.iteritems(instance_label_to_semantic_label): | |
class_labels[instance_labels == instance_id] = class_id | |
return instance_labels, class_labels | |