Spaces:
Building
Building
# Lint as: python2, python3 | |
# Copyright 2019 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for test_utils.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from absl.testing import absltest | |
import numpy as np | |
from deeplab.evaluation import test_utils | |
class TestUtilsTest(absltest.TestCase): | |
def test_read_test_image(self): | |
image_array = test_utils.read_test_image('team_pred_class.png') | |
self.assertSequenceEqual(image_array.shape, (231, 345, 4)) | |
def test_reads_segmentation_with_color_map(self): | |
rgb_to_semantic_label = {(0, 0, 0): 0, (0, 0, 255): 1, (255, 0, 0): 23} | |
labels = test_utils.read_segmentation_with_rgb_color_map( | |
'team_pred_class.png', rgb_to_semantic_label) | |
input_image = test_utils.read_test_image('team_pred_class.png') | |
np.testing.assert_array_equal( | |
labels == 0, | |
np.logical_and(input_image[:, :, 0] == 0, input_image[:, :, 2] == 0)) | |
np.testing.assert_array_equal(labels == 1, input_image[:, :, 2] == 255) | |
np.testing.assert_array_equal(labels == 23, input_image[:, :, 0] == 255) | |
def test_reads_gt_segmentation(self): | |
instance_label_to_semantic_label = { | |
0: 0, | |
47: 1, | |
97: 1, | |
133: 1, | |
150: 1, | |
174: 1, | |
198: 23, | |
215: 1, | |
244: 1, | |
255: 1, | |
} | |
instances, classes = test_utils.panoptic_segmentation_with_class_map( | |
'team_gt_instance.png', instance_label_to_semantic_label) | |
expected_label_shape = (231, 345) | |
self.assertSequenceEqual(instances.shape, expected_label_shape) | |
self.assertSequenceEqual(classes.shape, expected_label_shape) | |
np.testing.assert_array_equal(instances == 0, classes == 0) | |
np.testing.assert_array_equal(instances == 198, classes == 23) | |
np.testing.assert_array_equal( | |
np.logical_and(instances != 0, instances != 198), classes == 1) | |
if __name__ == '__main__': | |
absltest.main() | |