NCTCMumbai's picture
Upload 2583 files
97b6013 verified
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions to create a DSN model and add the different losses to it.
Specifically, in this file we define the:
- Shared Encoding Similarity Loss Module, with:
- The MMD Similarity method
- The Correlation Similarity method
- The Gradient Reversal (Domain-Adversarial) method
- Difference Loss Module
- Reconstruction Loss Module
- Task Loss Module
"""
from functools import partial
import tensorflow as tf
import losses
import models
import utils
slim = tf.contrib.slim
################################################################################
# HELPER FUNCTIONS
################################################################################
def dsn_loss_coefficient(params):
"""The global_step-dependent weight that specifies when to kick in DSN losses.
Args:
params: A dictionary of parameters. Expecting 'domain_separation_startpoint'
Returns:
A weight to that effectively enables or disables the DSN-related losses,
i.e. similarity, difference, and reconstruction losses.
"""
return tf.where(
tf.less(slim.get_or_create_global_step(),
params['domain_separation_startpoint']), 1e-10, 1.0)
################################################################################
# MODEL CREATION
################################################################################
def create_model(source_images, source_labels, domain_selection_mask,
target_images, target_labels, similarity_loss, params,
basic_tower_name):
"""Creates a DSN model.
Args:
source_images: images from the source domain, a tensor of size
[batch_size, height, width, channels]
source_labels: a dictionary with the name, tensor pairs. 'classes' is one-
hot for the number of classes.
domain_selection_mask: a boolean tensor of size [batch_size, ] which denotes
the labeled images that belong to the source domain.
target_images: images from the target domain, a tensor of size
[batch_size, height width, channels].
target_labels: a dictionary with the name, tensor pairs.
similarity_loss: The type of method to use for encouraging
the codes from the shared encoder to be similar.
params: A dictionary of parameters. Expecting 'weight_decay',
'layers_to_regularize', 'use_separation', 'domain_separation_startpoint',
'alpha_weight', 'beta_weight', 'gamma_weight', 'recon_loss_name',
'decoder_name', 'encoder_name'
basic_tower_name: the name of the tower to use for the shared encoder.
Raises:
ValueError: if the arch is not one of the available architectures.
"""
network = getattr(models, basic_tower_name)
num_classes = source_labels['classes'].get_shape().as_list()[1]
# Make sure we are using the appropriate number of classes.
network = partial(network, num_classes=num_classes)
# Add the classification/pose estimation loss to the source domain.
source_endpoints = add_task_loss(source_images, source_labels, network,
params)
if similarity_loss == 'none':
# No domain adaptation, we can stop here.
return
with tf.variable_scope('towers', reuse=True):
target_logits, target_endpoints = network(
target_images, weight_decay=params['weight_decay'], prefix='target')
# Plot target accuracy of the train set.
target_accuracy = utils.accuracy(
tf.argmax(target_logits, 1), tf.argmax(target_labels['classes'], 1))
if 'quaternions' in target_labels:
target_quaternion_loss = losses.log_quaternion_loss(
target_labels['quaternions'], target_endpoints['quaternion_pred'],
params)
tf.summary.scalar('eval/Target quaternions', target_quaternion_loss)
tf.summary.scalar('eval/Target accuracy', target_accuracy)
source_shared = source_endpoints[params['layers_to_regularize']]
target_shared = target_endpoints[params['layers_to_regularize']]
# When using the semisupervised model we include labeled target data in the
# source classifier. We do not want to include these target domain when
# we use the similarity loss.
indices = tf.range(0, source_shared.get_shape().as_list()[0])
indices = tf.boolean_mask(indices, domain_selection_mask)
add_similarity_loss(similarity_loss,
tf.gather(source_shared, indices),
tf.gather(target_shared, indices), params)
if params['use_separation']:
add_autoencoders(
source_images,
source_shared,
target_images,
target_shared,
params=params,)
def add_similarity_loss(method_name,
source_samples,
target_samples,
params,
scope=None):
"""Adds a loss encouraging the shared encoding from each domain to be similar.
Args:
method_name: the name of the encoding similarity method to use. Valid
options include `dann_loss', `mmd_loss' or `correlation_loss'.
source_samples: a tensor of shape [num_samples, num_features].
target_samples: a tensor of shape [num_samples, num_features].
params: a dictionary of parameters. Expecting 'gamma_weight'.
scope: optional name scope for summary tags.
Raises:
ValueError: if `method_name` is not recognized.
"""
weight = dsn_loss_coefficient(params) * params['gamma_weight']
method = getattr(losses, method_name)
method(source_samples, target_samples, weight, scope)
def add_reconstruction_loss(recon_loss_name, images, recons, weight, domain):
"""Adds a reconstruction loss.
Args:
recon_loss_name: The name of the reconstruction loss.
images: A `Tensor` of size [batch_size, height, width, 3].
recons: A `Tensor` whose size matches `images`.
weight: A scalar coefficient for the loss.
domain: The name of the domain being reconstructed.
Raises:
ValueError: If `recon_loss_name` is not recognized.
"""
if recon_loss_name == 'sum_of_pairwise_squares':
loss_fn = tf.contrib.losses.mean_pairwise_squared_error
elif recon_loss_name == 'sum_of_squares':
loss_fn = tf.contrib.losses.mean_squared_error
else:
raise ValueError('recon_loss_name value [%s] not recognized.' %
recon_loss_name)
loss = loss_fn(recons, images, weight)
assert_op = tf.Assert(tf.is_finite(loss), [loss])
with tf.control_dependencies([assert_op]):
tf.summary.scalar('losses/%s Recon Loss' % domain, loss)
def add_autoencoders(source_data, source_shared, target_data, target_shared,
params):
"""Adds the encoders/decoders for our domain separation model w/ incoherence.
Args:
source_data: images from the source domain, a tensor of size
[batch_size, height, width, channels]
source_shared: a tensor with first dimension batch_size
target_data: images from the target domain, a tensor of size
[batch_size, height, width, channels]
target_shared: a tensor with first dimension batch_size
params: A dictionary of parameters. Expecting 'layers_to_regularize',
'beta_weight', 'alpha_weight', 'recon_loss_name', 'decoder_name',
'encoder_name', 'weight_decay'
"""
def normalize_images(images):
images -= tf.reduce_min(images)
return images / tf.reduce_max(images)
def concat_operation(shared_repr, private_repr):
return shared_repr + private_repr
mu = dsn_loss_coefficient(params)
# The layer to concatenate the networks at.
concat_layer = params['layers_to_regularize']
# The coefficient for modulating the private/shared difference loss.
difference_loss_weight = params['beta_weight'] * mu
# The reconstruction weight.
recon_loss_weight = params['alpha_weight'] * mu
# The reconstruction loss to use.
recon_loss_name = params['recon_loss_name']
# The decoder/encoder to use.
decoder_name = params['decoder_name']
encoder_name = params['encoder_name']
_, height, width, _ = source_data.get_shape().as_list()
code_size = source_shared.get_shape().as_list()[-1]
weight_decay = params['weight_decay']
encoder_fn = getattr(models, encoder_name)
# Target Auto-encoding.
with tf.variable_scope('source_encoder'):
source_endpoints = encoder_fn(
source_data, code_size, weight_decay=weight_decay)
with tf.variable_scope('target_encoder'):
target_endpoints = encoder_fn(
target_data, code_size, weight_decay=weight_decay)
decoder_fn = getattr(models, decoder_name)
decoder = partial(
decoder_fn,
height=height,
width=width,
channels=source_data.get_shape().as_list()[-1],
weight_decay=weight_decay)
# Source Auto-encoding.
source_private = source_endpoints[concat_layer]
target_private = target_endpoints[concat_layer]
with tf.variable_scope('decoder'):
source_recons = decoder(concat_operation(source_shared, source_private))
with tf.variable_scope('decoder', reuse=True):
source_private_recons = decoder(
concat_operation(tf.zeros_like(source_private), source_private))
source_shared_recons = decoder(
concat_operation(source_shared, tf.zeros_like(source_shared)))
with tf.variable_scope('decoder', reuse=True):
target_recons = decoder(concat_operation(target_shared, target_private))
target_shared_recons = decoder(
concat_operation(target_shared, tf.zeros_like(target_shared)))
target_private_recons = decoder(
concat_operation(tf.zeros_like(target_private), target_private))
losses.difference_loss(
source_private,
source_shared,
weight=difference_loss_weight,
name='Source')
losses.difference_loss(
target_private,
target_shared,
weight=difference_loss_weight,
name='Target')
add_reconstruction_loss(recon_loss_name, source_data, source_recons,
recon_loss_weight, 'source')
add_reconstruction_loss(recon_loss_name, target_data, target_recons,
recon_loss_weight, 'target')
# Add summaries
source_reconstructions = tf.concat(
axis=2,
values=map(normalize_images, [
source_data, source_recons, source_shared_recons,
source_private_recons
]))
target_reconstructions = tf.concat(
axis=2,
values=map(normalize_images, [
target_data, target_recons, target_shared_recons,
target_private_recons
]))
tf.summary.image(
'Source Images:Recons:RGB',
source_reconstructions[:, :, :, :3],
max_outputs=10)
tf.summary.image(
'Target Images:Recons:RGB',
target_reconstructions[:, :, :, :3],
max_outputs=10)
if source_reconstructions.get_shape().as_list()[3] == 4:
tf.summary.image(
'Source Images:Recons:Depth',
source_reconstructions[:, :, :, 3:4],
max_outputs=10)
tf.summary.image(
'Target Images:Recons:Depth',
target_reconstructions[:, :, :, 3:4],
max_outputs=10)
def add_task_loss(source_images, source_labels, basic_tower, params):
"""Adds a classification and/or pose estimation loss to the model.
Args:
source_images: images from the source domain, a tensor of size
[batch_size, height, width, channels]
source_labels: labels from the source domain, a tensor of size [batch_size].
or a tuple of (quaternions, class_labels)
basic_tower: a function that creates the single tower of the model.
params: A dictionary of parameters. Expecting 'weight_decay', 'pose_weight'.
Returns:
The source endpoints.
Raises:
RuntimeError: if basic tower does not support pose estimation.
"""
with tf.variable_scope('towers'):
source_logits, source_endpoints = basic_tower(
source_images, weight_decay=params['weight_decay'], prefix='Source')
if 'quaternions' in source_labels: # We have pose estimation as well
if 'quaternion_pred' not in source_endpoints:
raise RuntimeError('Please use a model for estimation e.g. pose_mini')
loss = losses.log_quaternion_loss(source_labels['quaternions'],
source_endpoints['quaternion_pred'],
params)
assert_op = tf.Assert(tf.is_finite(loss), [loss])
with tf.control_dependencies([assert_op]):
quaternion_loss = loss
tf.summary.histogram('log_quaternion_loss_hist', quaternion_loss)
slim.losses.add_loss(quaternion_loss * params['pose_weight'])
tf.summary.scalar('losses/quaternion_loss', quaternion_loss)
classification_loss = tf.losses.softmax_cross_entropy(
source_labels['classes'], source_logits)
tf.summary.scalar('losses/classification_loss', classification_loss)
return source_endpoints