HS_Code_AI-Explanability
/
models
/research
/efficient-hrl
/context
/context_transition_functions.py
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Context functions. | |
Given the current contexts, timer and context sampler, returns new contexts | |
after an environment step. This can be used to define a high-level policy | |
that controls contexts as its actions. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
import gin.tf | |
import utils as uvf_utils | |
def periodic_context_fn(contexts, timer, sampler_fn, period=1): | |
"""Periodically samples contexts. | |
Args: | |
contexts: a list of [num_context_dims] tensor variables representing | |
current contexts. | |
timer: a scalar integer tensor variable holding the current time step. | |
sampler_fn: a sampler function that samples a list of [num_context_dims] | |
tensors. | |
period: (integer) period of update. | |
Returns: | |
a list of [num_context_dims] tensors. | |
""" | |
contexts = list(contexts[:]) # create copy | |
return tf.cond(tf.mod(timer, period) == 0, sampler_fn, lambda: contexts) | |
def timer_context_fn(contexts, | |
timer, | |
sampler_fn, | |
period=1, | |
timer_index=-1, | |
debug=False): | |
"""Samples contexts based on timer in contexts. | |
Args: | |
contexts: a list of [num_context_dims] tensor variables representing | |
current contexts. | |
timer: a scalar integer tensor variable holding the current time step. | |
sampler_fn: a sampler function that samples a list of [num_context_dims] | |
tensors. | |
period: (integer) period of update; actual period = `period` + 1. | |
timer_index: (integer) Index of context list that present timer. | |
debug: (boolean) Print debug messages. | |
Returns: | |
a list of [num_context_dims] tensors. | |
""" | |
contexts = list(contexts[:]) # create copy | |
cond = tf.equal(contexts[timer_index][0], 0) | |
def reset(): | |
"""Sample context and reset the timer.""" | |
new_contexts = sampler_fn() | |
new_contexts[timer_index] = tf.zeros_like( | |
contexts[timer_index]) + period | |
return new_contexts | |
def update(): | |
"""Decrement the timer.""" | |
contexts[timer_index] -= 1 | |
return contexts | |
values = tf.cond(cond, reset, update) | |
if debug: | |
values[0] = uvf_utils.tf_print( | |
values[0], | |
values + [timer], | |
'timer_context_fn', | |
first_n=200, | |
name='timer_context_fn:contexts') | |
return values | |
def relative_context_transition_fn( | |
contexts, timer, sampler_fn, | |
k=2, state=None, next_state=None, | |
**kwargs): | |
"""Contexts updated to be relative to next state. | |
""" | |
contexts = list(contexts[:]) # create copy | |
assert len(contexts) == 1 | |
new_contexts = [ | |
tf.concat( | |
[contexts[0][:k] + state[:k] - next_state[:k], | |
contexts[0][k:]], -1)] | |
return new_contexts | |
def relative_context_multi_transition_fn( | |
contexts, timer, sampler_fn, | |
k=2, states=None, | |
**kwargs): | |
"""Given contexts at first state and sequence of states, derives sequence of all contexts. | |
""" | |
contexts = list(contexts[:]) # create copy | |
assert len(contexts) == 1 | |
contexts = [ | |
tf.concat( | |
[tf.expand_dims(contexts[0][:, :k] + states[:, 0, :k], 1) - states[:, :, :k], | |
contexts[0][:, None, k:] * tf.ones_like(states[:, :, :1])], -1)] | |
return contexts | |