NCTCMumbai's picture
Upload 2583 files
97b6013 verified
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for creating the ant environment in gym_mujoco."""
import math
import numpy as np
import mujoco_py
from gym import utils
from gym.envs.mujoco import mujoco_env
class PointEnv(mujoco_env.MujocoEnv, utils.EzPickle):
FILE = "point.xml"
ORI_IND = 2
def __init__(self, file_path=None, expose_all_qpos=True):
self._expose_all_qpos = expose_all_qpos
mujoco_env.MujocoEnv.__init__(self, file_path, 1)
utils.EzPickle.__init__(self)
@property
def physics(self):
# check mujoco version is greater than version 1.50 to call correct physics
# model containing PyMjData object for getting and setting position/velocity
# check https://github.com/openai/mujoco-py/issues/80 for updates to api
if mujoco_py.get_version() >= '1.50':
return self.sim
else:
return self.model
def _step(self, a):
return self.step(a)
def step(self, action):
action[0] = 0.2 * action[0]
qpos = np.copy(self.physics.data.qpos)
qpos[2] += action[1]
ori = qpos[2]
# compute increment in each direction
dx = math.cos(ori) * action[0]
dy = math.sin(ori) * action[0]
# ensure that the robot is within reasonable range
qpos[0] = np.clip(qpos[0] + dx, -100, 100)
qpos[1] = np.clip(qpos[1] + dy, -100, 100)
qvel = self.physics.data.qvel
self.set_state(qpos, qvel)
for _ in range(0, self.frame_skip):
self.physics.step()
next_obs = self._get_obs()
reward = 0
done = False
info = {}
return next_obs, reward, done, info
def _get_obs(self):
if self._expose_all_qpos:
return np.concatenate([
self.physics.data.qpos.flat[:3], # Only point-relevant coords.
self.physics.data.qvel.flat[:3]])
return np.concatenate([
self.physics.data.qpos.flat[2:3],
self.physics.data.qvel.flat[:3]])
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(
size=self.physics.model.nq, low=-.1, high=.1)
qvel = self.init_qvel + self.np_random.randn(self.physics.model.nv) * .1
# Set everything other than point to original position and 0 velocity.
qpos[3:] = self.init_qpos[3:]
qvel[3:] = 0.
self.set_state(qpos, qvel)
return self._get_obs()
def get_ori(self):
return self.physics.data.qpos[self.__class__.ORI_IND]
def set_xy(self, xy):
qpos = np.copy(self.physics.data.qpos)
qpos[0] = xy[0]
qpos[1] = xy[1]
qvel = self.physics.data.qvel