|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for embedding utils.""" |
|
|
|
import unittest |
|
import numpy as np |
|
import tensorflow as tf |
|
from feelvos.utils import embedding_utils |
|
|
|
if embedding_utils.USE_CORRELATION_COST: |
|
|
|
from correlation_cost.python.ops import correlation_cost_op |
|
|
|
|
|
class EmbeddingUtilsTest(tf.test.TestCase): |
|
|
|
def test_pairwise_distances(self): |
|
x = np.arange(100, dtype=np.float32).reshape(20, 5) |
|
y = np.arange(100, 200, dtype=np.float32).reshape(20, 5) |
|
g = tf.Graph() |
|
with g.as_default(): |
|
with self.test_session(graph=g) as sess: |
|
x = tf.constant(x) |
|
y = tf.constant(y) |
|
d1 = embedding_utils.pairwise_distances(x, y) |
|
d2 = embedding_utils.pairwise_distances2(x, y) |
|
d1_val, d2_val = sess.run([d1, d2]) |
|
self.assertAllClose(d1_val, d2_val) |
|
|
|
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, |
|
'depends on correlation_cost') |
|
def test_correlation_cost_one_dimensional(self): |
|
a = np.array([[[[1.0], [2.0]], [[3.0], [4.0]]]]) |
|
b = np.array([[[[2.0], [1.0]], [[4.0], [3.0]]]]) |
|
g = tf.Graph() |
|
with g.as_default(): |
|
with self.test_session(graph=g) as sess: |
|
c = correlation_cost_op.correlation_cost( |
|
a, b, kernel_size=1, max_displacement=1, stride_1=1, stride_2=1, |
|
pad=1) |
|
c = tf.squeeze(c, axis=0) |
|
c_val = sess.run(c) |
|
self.assertAllEqual(c_val.shape, (2, 2, 9)) |
|
for y in range(2): |
|
for x in range(2): |
|
for dy in range(-1, 2): |
|
for dx in range(-1, 2): |
|
a_slice = a[0, y, x, 0] |
|
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: |
|
b_slice = 0 |
|
else: |
|
b_slice = b[0, y + dy, x + dx, 0] |
|
expected = a_slice * b_slice |
|
dy0 = dy + 1 |
|
dx0 = dx + 1 |
|
self.assertAlmostEqual(c_val[y, x, 3 * dy0 + dx0], expected) |
|
|
|
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, |
|
'depends on correlation_cost') |
|
def test_correlation_cost_two_dimensional(self): |
|
a = np.array([[[[1.0, -5.0], [7.0, 2.0]], [[1.0, 3.0], [3.0, 4.0]]]]) |
|
b = np.array([[[[2.0, 1.0], [0.0, -9.0]], [[4.0, 3.0], [3.0, 1.0]]]]) |
|
g = tf.Graph() |
|
with g.as_default(): |
|
with self.test_session(graph=g) as sess: |
|
c = correlation_cost_op.correlation_cost( |
|
a, b, kernel_size=1, max_displacement=1, stride_1=1, stride_2=1, |
|
pad=1) |
|
c = tf.squeeze(c, axis=0) |
|
c_val = sess.run(c) |
|
self.assertAllEqual(c_val.shape, (2, 2, 9)) |
|
for y in range(2): |
|
for x in range(2): |
|
for dy in range(-1, 2): |
|
for dx in range(-1, 2): |
|
a_slice = a[0, y, x, :] |
|
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: |
|
b_slice = 0 |
|
else: |
|
b_slice = b[0, y + dy, x + dx, :] |
|
expected = (a_slice * b_slice).mean() |
|
dy0 = dy + 1 |
|
dx0 = dx + 1 |
|
self.assertAlmostEqual(c_val[y, x, 3 * dy0 + dx0], expected) |
|
|
|
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, |
|
'depends on correlation_cost') |
|
def test_local_pairwise_distances_one_dimensional(self): |
|
a = np.array([[[1.0], [2.0]], [[3.0], [4.0]]]) |
|
b = np.array([[[2.0], [1.0]], [[4.0], [3.0]]]) |
|
g = tf.Graph() |
|
with g.as_default(): |
|
with self.test_session(graph=g) as sess: |
|
a_tf = tf.constant(a, dtype=tf.float32) |
|
b_tf = tf.constant(b, dtype=tf.float32) |
|
d = embedding_utils.local_pairwise_distances(a_tf, b_tf, |
|
max_distance=1) |
|
d_val = sess.run(d) |
|
for y in range(2): |
|
for x in range(2): |
|
for dy in range(-1, 2): |
|
for dx in range(-1, 2): |
|
a_slice = a[y, x, 0] |
|
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: |
|
expected = np.float('inf') |
|
else: |
|
b_slice = b[y + dy, x + dx, 0] |
|
expected = (a_slice - b_slice) ** 2 |
|
dy0 = dy + 1 |
|
dx0 = dx + 1 |
|
self.assertAlmostEqual(d_val[y, x, 3 * dy0 + dx0], expected) |
|
|
|
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, |
|
'depends on correlation_cost') |
|
def test_local_pairwise_distances_shape(self): |
|
a = np.zeros((4, 5, 2)) |
|
b = np.zeros((4, 5, 2)) |
|
g = tf.Graph() |
|
with g.as_default(): |
|
with self.test_session(graph=g) as sess: |
|
a_tf = tf.constant(a, dtype=tf.float32) |
|
b_tf = tf.constant(b, dtype=tf.float32) |
|
d = embedding_utils.local_pairwise_distances(a_tf, b_tf, max_distance=4) |
|
d_val = sess.run(d) |
|
self.assertAllEqual(d_val.shape, (4, 5, 81)) |
|
|
|
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, |
|
'depends on correlation_cost') |
|
def test_local_pairwise_distances_two_dimensional(self): |
|
a = np.array([[[1.0, -5.0], [7.0, 2.0]], [[1.0, 3.0], [3.0, 4.0]]]) |
|
b = np.array([[[2.0, 1.0], [0.0, -9.0]], [[4.0, 3.0], [3.0, 1.0]]]) |
|
g = tf.Graph() |
|
with g.as_default(): |
|
with self.test_session(graph=g) as sess: |
|
a_tf = tf.constant(a, dtype=tf.float32) |
|
b_tf = tf.constant(b, dtype=tf.float32) |
|
d = embedding_utils.local_pairwise_distances(a_tf, b_tf, |
|
max_distance=1) |
|
d_val = sess.run(d) |
|
for y in range(2): |
|
for x in range(2): |
|
for dy in range(-1, 2): |
|
for dx in range(-1, 2): |
|
a_slice = a[y, x, :] |
|
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: |
|
expected = np.float('inf') |
|
else: |
|
b_slice = b[y + dy, x + dx, :] |
|
expected = ((a_slice - b_slice) ** 2).sum() |
|
dy0 = dy + 1 |
|
dx0 = dx + 1 |
|
self.assertAlmostEqual(d_val[y, x, 3 * dy0 + dx0], expected) |
|
|
|
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, |
|
'depends on correlation_cost') |
|
def test_local_previous_frame_nearest_neighbor_features_per_object(self): |
|
prev_frame_embedding = np.array([[[1.0, -5.0], [7.0, 2.0]], |
|
[[1.0, 3.0], [3.0, 4.0]]]) / 10 |
|
query_embedding = np.array([[[2.0, 1.0], [0.0, -9.0]], |
|
[[4.0, 3.0], [3.0, 1.0]]]) / 10 |
|
prev_frame_labels = np.array([[[0], [1]], [[1], [0]]]) |
|
gt_ids = np.array([0, 1]) |
|
g = tf.Graph() |
|
with g.as_default(): |
|
with self.test_session(graph=g) as sess: |
|
prev_frame_embedding_tf = tf.constant(prev_frame_embedding, |
|
dtype=tf.float32) |
|
query_embedding_tf = tf.constant(query_embedding, dtype=tf.float32) |
|
embu = embedding_utils |
|
dists = ( |
|
embu.local_previous_frame_nearest_neighbor_features_per_object( |
|
prev_frame_embedding_tf, query_embedding_tf, |
|
prev_frame_labels, gt_ids, max_distance=1)) |
|
dists = tf.squeeze(dists, axis=4) |
|
dists = tf.squeeze(dists, axis=0) |
|
dists_val = sess.run(dists) |
|
for obj_id in gt_ids: |
|
for y in range(2): |
|
for x in range(2): |
|
curr_min = 1.0 |
|
for dy in range(-1, 2): |
|
for dx in range(-1, 2): |
|
|
|
|
|
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: |
|
continue |
|
if prev_frame_labels[y + dy, x + dx, 0] != obj_id: |
|
continue |
|
prev_frame_slice = prev_frame_embedding[y + dy, x + dx, :] |
|
query_frame_slice = query_embedding[y, x, :] |
|
v_unnorm = ((prev_frame_slice - query_frame_slice) ** 2).sum() |
|
v = ((1.0 / (1.0 + np.exp(-v_unnorm))) - 0.5) * 2 |
|
curr_min = min(curr_min, v) |
|
expected = curr_min |
|
self.assertAlmostEqual(dists_val[y, x, obj_id], expected, |
|
places=5) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|