|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Utilities for artificially damaging segmentation masks.""" |
|
|
|
import numpy as np |
|
from scipy.ndimage import interpolation |
|
from skimage import morphology |
|
from skimage import transform |
|
import tensorflow as tf |
|
|
|
|
|
def damage_masks(labels, shift=True, scale=True, rotate=True, dilate=True): |
|
"""Damages segmentation masks by random transformations. |
|
|
|
Args: |
|
labels: Int32 labels tensor of shape (height, width, 1). |
|
shift: Boolean, whether to damage the masks by shifting. |
|
scale: Boolean, whether to damage the masks by scaling. |
|
rotate: Boolean, whether to damage the masks by rotation. |
|
dilate: Boolean, whether to damage the masks by dilation. |
|
|
|
Returns: |
|
The damaged version of labels. |
|
""" |
|
def _damage_masks_np(labels_): |
|
return damage_masks_np(labels_, shift, scale, rotate, dilate) |
|
damaged_masks = tf.py_func(_damage_masks_np, [labels], tf.int32, |
|
name='damage_masks') |
|
damaged_masks.set_shape(labels.get_shape()) |
|
return damaged_masks |
|
|
|
|
|
def damage_masks_np(labels, shift=True, scale=True, rotate=True, dilate=True): |
|
"""Performs the actual mask damaging in numpy. |
|
|
|
Args: |
|
labels: Int32 numpy array of shape (height, width, 1). |
|
shift: Boolean, whether to damage the masks by shifting. |
|
scale: Boolean, whether to damage the masks by scaling. |
|
rotate: Boolean, whether to damage the masks by rotation. |
|
dilate: Boolean, whether to damage the masks by dilation. |
|
|
|
Returns: |
|
The damaged version of labels. |
|
""" |
|
unique_labels = np.unique(labels) |
|
unique_labels = np.setdiff1d(unique_labels, [0]) |
|
|
|
np.random.shuffle(unique_labels) |
|
damaged_labels = np.zeros_like(labels) |
|
for l in unique_labels: |
|
obj_mask = (labels == l) |
|
damaged_obj_mask = _damage_single_object_mask(obj_mask, shift, scale, |
|
rotate, dilate) |
|
damaged_labels[damaged_obj_mask] = l |
|
return damaged_labels |
|
|
|
|
|
def _damage_single_object_mask(mask, shift, scale, rotate, dilate): |
|
"""Performs mask damaging in numpy for a single object. |
|
|
|
Args: |
|
mask: Boolean numpy array of shape(height, width, 1). |
|
shift: Boolean, whether to damage the masks by shifting. |
|
scale: Boolean, whether to damage the masks by scaling. |
|
rotate: Boolean, whether to damage the masks by rotation. |
|
dilate: Boolean, whether to damage the masks by dilation. |
|
|
|
Returns: |
|
The damaged version of mask. |
|
""" |
|
|
|
|
|
if shift: |
|
mask = _shift_mask(mask) |
|
if scale: |
|
mask = _scale_mask(mask) |
|
if rotate: |
|
mask = _rotate_mask(mask) |
|
if dilate: |
|
mask = _dilate_mask(mask) |
|
return mask |
|
|
|
|
|
def _shift_mask(mask, max_shift_factor=0.05): |
|
"""Damages a mask for a single object by randomly shifting it in numpy. |
|
|
|
Args: |
|
mask: Boolean numpy array of shape(height, width, 1). |
|
max_shift_factor: Float scalar, the maximum factor for random shifting. |
|
|
|
Returns: |
|
The shifted version of mask. |
|
""" |
|
nzy, nzx, _ = mask.nonzero() |
|
h = nzy.max() - nzy.min() |
|
w = nzx.max() - nzx.min() |
|
size = np.sqrt(h * w) |
|
offset = np.random.uniform(-size * max_shift_factor, size * max_shift_factor, |
|
2) |
|
shifted_mask = interpolation.shift(np.squeeze(mask, axis=2), |
|
offset, order=0).astype('bool')[..., |
|
np.newaxis] |
|
return shifted_mask |
|
|
|
|
|
def _scale_mask(mask, scale_amount=0.025): |
|
"""Damages a mask for a single object by randomly scaling it in numpy. |
|
|
|
Args: |
|
mask: Boolean numpy array of shape(height, width, 1). |
|
scale_amount: Float scalar, the maximum factor for random scaling. |
|
|
|
Returns: |
|
The scaled version of mask. |
|
""" |
|
nzy, nzx, _ = mask.nonzero() |
|
cy = 0.5 * (nzy.max() - nzy.min()) |
|
cx = 0.5 * (nzx.max() - nzx.min()) |
|
scale_factor = np.random.uniform(1.0 - scale_amount, 1.0 + scale_amount) |
|
shift = transform.SimilarityTransform(translation=[-cx, -cy]) |
|
inv_shift = transform.SimilarityTransform(translation=[cx, cy]) |
|
s = transform.SimilarityTransform(scale=[scale_factor, scale_factor]) |
|
m = (shift + (s + inv_shift)).inverse |
|
scaled_mask = transform.warp(mask, m) > 0.5 |
|
return scaled_mask |
|
|
|
|
|
def _rotate_mask(mask, max_rot_degrees=3.0): |
|
"""Damages a mask for a single object by randomly rotating it in numpy. |
|
|
|
Args: |
|
mask: Boolean numpy array of shape(height, width, 1). |
|
max_rot_degrees: Float scalar, the maximum number of degrees to rotate. |
|
|
|
Returns: |
|
The scaled version of mask. |
|
""" |
|
cy = 0.5 * mask.shape[0] |
|
cx = 0.5 * mask.shape[1] |
|
rot_degrees = np.random.uniform(-max_rot_degrees, max_rot_degrees) |
|
shift = transform.SimilarityTransform(translation=[-cx, -cy]) |
|
inv_shift = transform.SimilarityTransform(translation=[cx, cy]) |
|
r = transform.SimilarityTransform(rotation=np.deg2rad(rot_degrees)) |
|
m = (shift + (r + inv_shift)).inverse |
|
scaled_mask = transform.warp(mask, m) > 0.5 |
|
return scaled_mask |
|
|
|
|
|
def _dilate_mask(mask, dilation_radius=5): |
|
"""Damages a mask for a single object by dilating it in numpy. |
|
|
|
Args: |
|
mask: Boolean numpy array of shape(height, width, 1). |
|
dilation_radius: Integer, the radius of the used disk structure element. |
|
|
|
Returns: |
|
The dilated version of mask. |
|
""" |
|
disk = morphology.disk(dilation_radius, dtype=np.bool) |
|
dilated_mask = morphology.binary_dilation( |
|
np.squeeze(mask, axis=2), selem=disk)[..., np.newaxis] |
|
return dilated_mask |
|
|