|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Utility functions for training.""" |
|
import collections |
|
import six |
|
import tensorflow as tf |
|
|
|
from deeplab.core import preprocess_utils |
|
from deeplab.utils import train_utils |
|
from feelvos.utils import embedding_utils |
|
from feelvos.utils import eval_utils |
|
|
|
slim = tf.contrib.slim |
|
add_softmax_cross_entropy_loss_for_each_scale = ( |
|
train_utils.add_softmax_cross_entropy_loss_for_each_scale) |
|
get_model_gradient_multipliers = train_utils.get_model_gradient_multipliers |
|
get_model_learning_rate = train_utils.get_model_learning_rate |
|
resolve_shape = preprocess_utils.resolve_shape |
|
|
|
|
|
def add_triplet_loss_for_each_scale(batch_size, num_frames_per_video, |
|
embedding_dim, scales_to_embeddings, |
|
labels, scope): |
|
"""Adds triplet loss for logits of each scale. |
|
|
|
Args: |
|
batch_size: Int, the number of video chunks sampled per batch |
|
num_frames_per_video: Int, the number of frames per video. |
|
embedding_dim: Int, the dimension of the learned embedding |
|
scales_to_embeddings: A map from embedding names for different scales to |
|
embeddings. The embeddings have shape [batch, embeddings_height, |
|
embeddings_width, embedding_dim]. |
|
labels: Groundtruth labels with shape [batch, image_height, image_width, 1]. |
|
scope: String, the scope for the loss. |
|
|
|
Raises: |
|
ValueError: labels is None. |
|
""" |
|
if labels is None: |
|
raise ValueError('No label for triplet loss.') |
|
for scale, embeddings in scales_to_embeddings.iteritems(): |
|
loss_scope = None |
|
if scope: |
|
loss_scope = '%s_%s' % (scope, scale) |
|
|
|
scaled_labels = tf.image.resize_nearest_neighbor( |
|
labels, |
|
resolve_shape(embeddings, 4)[1:3], |
|
align_corners=True) |
|
|
|
h = tf.shape(embeddings)[1] |
|
w = tf.shape(embeddings)[2] |
|
new_labels_shape = tf.stack([batch_size, num_frames_per_video, h, w, 1]) |
|
reshaped_labels = tf.reshape(scaled_labels, new_labels_shape) |
|
new_embeddings_shape = tf.stack([batch_size, num_frames_per_video, h, w, |
|
-1]) |
|
reshaped_embeddings = tf.reshape(embeddings, new_embeddings_shape) |
|
|
|
with tf.name_scope(loss_scope): |
|
total_loss = tf.constant(0, dtype=tf.float32) |
|
for n in range(batch_size): |
|
embedding = reshaped_embeddings[n] |
|
label = reshaped_labels[n] |
|
n_pixels = h * w |
|
n_anchors_used = 256 |
|
sampled_anchor_indices = tf.random_shuffle(tf.range(n_pixels))[ |
|
:n_anchors_used] |
|
anchors_pool = tf.reshape(embedding[0], [-1, embedding_dim]) |
|
anchors_pool_classes = tf.reshape(label[0], [-1]) |
|
anchors = tf.gather(anchors_pool, sampled_anchor_indices) |
|
anchor_classes = tf.gather(anchors_pool_classes, sampled_anchor_indices) |
|
|
|
pos_neg_pool = tf.reshape(embedding[1:], [-1, embedding_dim]) |
|
pos_neg_pool_classes = tf.reshape(label[1:], [-1]) |
|
dists = embedding_utils.pairwise_distances(anchors, pos_neg_pool) |
|
pos_mask = tf.equal(anchor_classes[:, tf.newaxis], |
|
pos_neg_pool_classes[tf.newaxis, :]) |
|
neg_mask = tf.logical_not(pos_mask) |
|
pos_mask_f = tf.cast(pos_mask, tf.float32) |
|
neg_mask_f = tf.cast(neg_mask, tf.float32) |
|
pos_dists = pos_mask_f * dists + 1e20 * neg_mask_f |
|
neg_dists = neg_mask_f * dists + 1e20 * pos_mask_f |
|
pos_dists_min = tf.reduce_min(pos_dists, axis=1) |
|
neg_dists_min = tf.reduce_min(neg_dists, axis=1) |
|
margin = 1.0 |
|
loss = tf.nn.relu(pos_dists_min - neg_dists_min + margin) |
|
|
|
any_pos = tf.reduce_any(pos_mask, axis=1) |
|
loss *= tf.cast(any_pos, tf.float32) |
|
|
|
loss = tf.reduce_mean(loss, axis=0) |
|
total_loss += loss |
|
total_loss /= batch_size |
|
|
|
total_loss *= 3.0 |
|
tf.add_to_collection(tf.GraphKeys.LOSSES, total_loss) |
|
|
|
|
|
def add_dynamic_softmax_cross_entropy_loss_for_each_scale( |
|
scales_to_logits, labels, ignore_label, loss_weight=1.0, |
|
upsample_logits=True, scope=None, top_k_percent_pixels=1.0, |
|
hard_example_mining_step=100000): |
|
"""Adds softmax cross entropy loss per scale for logits with varying classes. |
|
|
|
Also adds summaries for mIoU. |
|
|
|
Args: |
|
scales_to_logits: A map from logits names for different scales to logits. |
|
The logits are a list of length batch_size of tensors of shape |
|
[time, logits_height, logits_width, num_classes]. |
|
labels: Groundtruth labels with shape [batch_size * time, image_height, |
|
image_width, 1]. |
|
ignore_label: Integer, label to ignore. |
|
loss_weight: Float, loss weight. |
|
upsample_logits: Boolean, upsample logits or not. |
|
scope: String, the scope for the loss. |
|
top_k_percent_pixels: A float, the value lies in [0.0, 1.0]. When its |
|
value < 1.0, only compute the loss for the top k percent pixels (e.g., |
|
the top 20% pixels). This is useful for hard pixel mining. |
|
hard_example_mining_step: An integer, the training step in which the |
|
hard exampling mining kicks off. Note that we gradually reduce the |
|
mining percent to the top_k_percent_pixels. For example, if |
|
hard_example_mining_step=100K and top_k_percent_pixels=0.25, then |
|
mining percent will gradually reduce from 100% to 25% until 100K steps |
|
after which we only mine top 25% pixels. |
|
|
|
Raises: |
|
ValueError: Label or logits is None. |
|
""" |
|
if labels is None: |
|
raise ValueError('No label for softmax cross entropy loss.') |
|
|
|
if top_k_percent_pixels < 0 or top_k_percent_pixels > 1: |
|
raise ValueError('Unexpected value of top_k_percent_pixels.') |
|
|
|
for scale, logits in six.iteritems(scales_to_logits): |
|
loss_scope = None |
|
if scope: |
|
loss_scope = '%s_%s' % (scope, scale) |
|
|
|
if upsample_logits: |
|
|
|
assert isinstance(logits, collections.Sequence) |
|
logits = [tf.image.resize_bilinear( |
|
x, |
|
preprocess_utils.resolve_shape(labels, 4)[1:3], |
|
align_corners=True) for x in logits] |
|
scaled_labels = labels |
|
else: |
|
|
|
assert isinstance(logits, collections.Sequence) |
|
scaled_labels = tf.image.resize_nearest_neighbor( |
|
labels, |
|
preprocess_utils.resolve_shape(logits[0], 4)[1:3], |
|
align_corners=True) |
|
|
|
batch_size = len(logits) |
|
num_time = preprocess_utils.resolve_shape(logits[0])[0] |
|
reshaped_labels = tf.reshape( |
|
scaled_labels, ([batch_size, num_time] + |
|
preprocess_utils.resolve_shape(scaled_labels)[1:])) |
|
for n, logits_n in enumerate(logits): |
|
labels_n = reshaped_labels[n] |
|
labels_n = tf.reshape(labels_n, shape=[-1]) |
|
not_ignore_mask = tf.to_float(tf.not_equal(labels_n, |
|
ignore_label)) * loss_weight |
|
num_classes_n = tf.shape(logits_n)[-1] |
|
one_hot_labels = slim.one_hot_encoding( |
|
labels_n, num_classes_n, on_value=1.0, off_value=0.0) |
|
logits_n_flat = tf.reshape(logits_n, shape=[-1, num_classes_n]) |
|
if top_k_percent_pixels == 1.0: |
|
tf.losses.softmax_cross_entropy( |
|
one_hot_labels, |
|
logits_n_flat, |
|
weights=not_ignore_mask, |
|
scope=loss_scope) |
|
else: |
|
|
|
|
|
|
|
num_pixels = tf.to_float(tf.shape(logits_n_flat)[0]) |
|
pixel_losses = tf.losses.softmax_cross_entropy( |
|
one_hot_labels, |
|
logits_n_flat, |
|
weights=not_ignore_mask, |
|
scope='pixel_losses', |
|
loss_collection=None, |
|
reduction=tf.losses.Reduction.NONE) |
|
|
|
if hard_example_mining_step == 0: |
|
|
|
top_k_pixels = tf.to_int32(top_k_percent_pixels * num_pixels) |
|
else: |
|
|
|
global_step = tf.to_float(tf.train.get_or_create_global_step()) |
|
ratio = tf.minimum(1.0, global_step / hard_example_mining_step) |
|
top_k_pixels = tf.to_int32( |
|
(ratio * top_k_percent_pixels + (1.0 - ratio)) * num_pixels) |
|
_, top_k_indices = tf.nn.top_k(pixel_losses, |
|
k=top_k_pixels, |
|
sorted=True, |
|
name='top_k_percent_pixels') |
|
|
|
tf.losses.softmax_cross_entropy( |
|
tf.gather(one_hot_labels, top_k_indices), |
|
tf.gather(logits_n_flat, top_k_indices), |
|
weights=tf.gather(not_ignore_mask, top_k_indices), |
|
scope=loss_scope) |
|
|
|
pred_n = tf.argmax(logits_n, axis=-1, output_type=tf.int32)[ |
|
..., tf.newaxis] |
|
labels_n = labels[n * num_time: (n + 1) * num_time] |
|
miou = eval_utils.calculate_multi_object_miou_tf(pred_n, labels_n) |
|
tf.summary.scalar('miou', miou) |
|
|
|
|
|
def get_model_init_fn(train_logdir, |
|
tf_initial_checkpoint, |
|
initialize_last_layer, |
|
last_layers, |
|
ignore_missing_vars=False): |
|
"""Gets the function initializing model variables from a checkpoint. |
|
|
|
Args: |
|
train_logdir: Log directory for training. |
|
tf_initial_checkpoint: TensorFlow checkpoint for initialization. |
|
initialize_last_layer: Initialize last layer or not. |
|
last_layers: Last layers of the model. |
|
ignore_missing_vars: Ignore missing variables in the checkpoint. |
|
|
|
Returns: |
|
Initialization function. |
|
""" |
|
if tf_initial_checkpoint is None: |
|
tf.logging.info('Not initializing the model from a checkpoint.') |
|
return None |
|
|
|
if tf.train.latest_checkpoint(train_logdir): |
|
tf.logging.info('Ignoring initialization; other checkpoint exists') |
|
return None |
|
|
|
tf.logging.info('Initializing model from path: %s', tf_initial_checkpoint) |
|
|
|
|
|
exclude_list = ['global_step'] |
|
if not initialize_last_layer: |
|
exclude_list.extend(last_layers) |
|
|
|
variables_to_restore = slim.get_variables_to_restore(exclude=exclude_list) |
|
|
|
if variables_to_restore: |
|
return slim.assign_from_checkpoint_fn( |
|
tf_initial_checkpoint, |
|
variables_to_restore, |
|
ignore_missing_vars=ignore_missing_vars) |
|
return None |
|
|