|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for global objectives loss layers.""" |
|
|
|
|
|
from absl.testing import parameterized |
|
import numpy |
|
import tensorflow as tf |
|
|
|
from global_objectives import loss_layers |
|
from global_objectives import util |
|
|
|
|
|
|
|
class PrecisionRecallAUCLossTest(parameterized.TestCase, tf.test.TestCase): |
|
|
|
@parameterized.named_parameters( |
|
('_xent', 'xent', 0.7), |
|
('_hinge', 'hinge', 0.7), |
|
('_hinge_2', 'hinge', 0.5) |
|
) |
|
def testSinglePointAUC(self, surrogate_type, target_precision): |
|
|
|
|
|
batch_shape = [10, 2] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
labels = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4))) |
|
|
|
auc_loss, _ = loss_layers.precision_recall_auc_loss( |
|
labels, |
|
logits, |
|
precision_range=(target_precision - 0.01, target_precision + 0.01), |
|
num_anchors=1, |
|
surrogate_type=surrogate_type) |
|
point_loss, _ = loss_layers.recall_at_precision_loss( |
|
labels, logits, target_precision=target_precision, |
|
surrogate_type=surrogate_type) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(auc_loss.eval(), point_loss.eval()) |
|
|
|
def testThreePointAUC(self): |
|
|
|
|
|
batch_shape = [11, 3] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
labels = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4))) |
|
|
|
|
|
auc_loss, _ = loss_layers.precision_recall_auc_loss( |
|
labels, logits, num_anchors=1) |
|
first_point_loss, _ = loss_layers.recall_at_precision_loss( |
|
labels, logits, target_precision=0.25) |
|
second_point_loss, _ = loss_layers.recall_at_precision_loss( |
|
labels, logits, target_precision=0.5) |
|
third_point_loss, _ = loss_layers.recall_at_precision_loss( |
|
labels, logits, target_precision=0.75) |
|
expected_loss = (first_point_loss + second_point_loss + |
|
third_point_loss) / 3 |
|
|
|
auc_loss_hinge, _ = loss_layers.precision_recall_auc_loss( |
|
labels, logits, num_anchors=1, surrogate_type='hinge') |
|
first_point_hinge, _ = loss_layers.recall_at_precision_loss( |
|
labels, logits, target_precision=0.25, surrogate_type='hinge') |
|
second_point_hinge, _ = loss_layers.recall_at_precision_loss( |
|
labels, logits, target_precision=0.5, surrogate_type='hinge') |
|
third_point_hinge, _ = loss_layers.recall_at_precision_loss( |
|
labels, logits, target_precision=0.75, surrogate_type='hinge') |
|
expected_hinge = (first_point_hinge + second_point_hinge + |
|
third_point_hinge) / 3 |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(auc_loss.eval(), expected_loss.eval()) |
|
self.assertAllClose(auc_loss_hinge.eval(), expected_hinge.eval()) |
|
|
|
def testLagrangeMultiplierUpdateDirection(self): |
|
for target_precision in [0.35, 0.65]: |
|
precision_range = (target_precision - 0.01, target_precision + 0.01) |
|
|
|
for surrogate_type in ['xent', 'hinge']: |
|
kwargs = {'precision_range': precision_range, |
|
'num_anchors': 1, |
|
'surrogate_type': surrogate_type, |
|
'scope': 'pr-auc_{}_{}'.format(target_precision, |
|
surrogate_type)} |
|
run_lagrange_multiplier_test( |
|
global_objective=loss_layers.precision_recall_auc_loss, |
|
objective_kwargs=kwargs, |
|
data_builder=_multilabel_data, |
|
test_object=self) |
|
kwargs['scope'] = 'other-' + kwargs['scope'] |
|
run_lagrange_multiplier_test( |
|
global_objective=loss_layers.precision_recall_auc_loss, |
|
objective_kwargs=kwargs, |
|
data_builder=_other_multilabel_data(surrogate_type), |
|
test_object=self) |
|
|
|
|
|
class ROCAUCLossTest(parameterized.TestCase, tf.test.TestCase): |
|
|
|
def testSimpleScores(self): |
|
|
|
|
|
|
|
num_positives = 10 |
|
scores_positives = tf.constant(3.0 * numpy.random.randn(num_positives), |
|
shape=[num_positives, 1]) |
|
labels = tf.constant([0.0] + [1.0] * num_positives, |
|
shape=[num_positives + 1, 1]) |
|
scores = tf.concat([[[0.0]], scores_positives], 0) |
|
|
|
loss = tf.reduce_sum( |
|
loss_layers.roc_auc_loss(labels, scores, surrogate_type='hinge')[0]) |
|
expected_loss = tf.reduce_sum( |
|
tf.maximum(1.0 - scores_positives, 0)) / (num_positives + 1) |
|
with self.test_session(): |
|
self.assertAllClose(expected_loss.eval(), loss.eval()) |
|
|
|
def testRandomROCLoss(self): |
|
|
|
shape = [1000, 30] |
|
scores = tf.constant( |
|
numpy.random.randint(0, 2, size=shape), shape=shape, dtype=tf.float32) |
|
labels = tf.constant( |
|
numpy.random.randint(0, 2, size=shape), shape=shape, dtype=tf.float32) |
|
loss = tf.reduce_mean(loss_layers.roc_auc_loss( |
|
labels, scores, surrogate_type='hinge')[0]) |
|
with self.test_session(): |
|
self.assertAllClose(0.25, loss.eval(), 1e-2) |
|
|
|
@parameterized.named_parameters( |
|
('_zero_hinge', 'xent', |
|
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0], |
|
[-5.0, -7.0, -9.0, 8.0, 10.0, 14.0], |
|
0.0), |
|
('_zero_xent', 'hinge', |
|
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0], |
|
[-0.2, 0, -0.1, 1.0, 1.1, 1.0], |
|
0.0), |
|
('_xent', 'xent', |
|
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0], |
|
[0.0, -17.0, -19.0, 1.0, 14.0, 14.0], |
|
numpy.log(1.0 + numpy.exp(-1.0)) / 6), |
|
('_hinge', 'hinge', |
|
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0], |
|
[-0.2, -0.05, 0.0, 0.95, 0.8, 1.0], |
|
0.4 / 6) |
|
) |
|
def testManualROCLoss(self, surrogate_type, labels, logits, expected_value): |
|
labels = tf.constant(labels) |
|
logits = tf.constant(logits) |
|
loss, _ = loss_layers.roc_auc_loss( |
|
labels=labels, logits=logits, surrogate_type=surrogate_type) |
|
|
|
with self.test_session(): |
|
self.assertAllClose(expected_value, tf.reduce_sum(loss).eval()) |
|
|
|
def testMultiLabelROCLoss(self): |
|
|
|
targets = numpy.array([[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]]) |
|
scores = numpy.array([[0.1, 1.0, 1.1, 1.0], [1.0, 0.0, 1.3, 1.1]]) |
|
class_1_auc = tf.reduce_sum( |
|
loss_layers.roc_auc_loss(targets[0], scores[0])[0]) |
|
class_2_auc = tf.reduce_sum( |
|
loss_layers.roc_auc_loss(targets[1], scores[1])[0]) |
|
total_auc = tf.reduce_sum(loss_layers.roc_auc_loss( |
|
targets.transpose(), scores.transpose())[0]) |
|
|
|
with self.test_session(): |
|
self.assertAllClose(total_auc.eval(), |
|
class_1_auc.eval() + class_2_auc.eval()) |
|
|
|
def testWeights(self): |
|
|
|
|
|
|
|
logits_positives = tf.constant([2.54321, -0.26, 3.334334], shape=[3, 1]) |
|
logits_negatives = tf.constant([-0.6, 1, -1.3, -1.3, -0.6, 1], shape=[6, 1]) |
|
logits = tf.concat([logits_positives, logits_negatives], 0) |
|
targets = tf.constant([1, 1, 1, 0, 0, 0, 0, 0, 0], |
|
shape=[9, 1], dtype=tf.float32) |
|
weights = tf.constant([1, 1, 1, 0, 0, 0, 2, 2, 2], |
|
shape=[9, 1], dtype=tf.float32) |
|
|
|
loss = tf.reduce_sum(loss_layers.roc_auc_loss(targets, logits)[0]) |
|
weighted_loss = tf.reduce_sum( |
|
loss_layers.roc_auc_loss(targets, logits, weights)[0]) |
|
|
|
with self.test_session(): |
|
self.assertAllClose(loss.eval(), weighted_loss.eval()) |
|
|
|
|
|
class RecallAtPrecisionTest(tf.test.TestCase): |
|
|
|
def testEqualWeightLoss(self): |
|
|
|
target_precision = 1.0 |
|
num_labels = 5 |
|
batch_shape = [20, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.7))) |
|
label_priors = tf.constant(0.34, shape=[num_labels]) |
|
|
|
loss, _ = loss_layers.recall_at_precision_loss( |
|
targets, logits, target_precision, label_priors=label_priors) |
|
expected_loss = ( |
|
tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits( |
|
logits, targets)) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
loss_val, expected_val = session.run([loss, expected_loss]) |
|
self.assertAllClose(loss_val, expected_val) |
|
|
|
def testEqualWeightLossWithMultiplePrecisions(self): |
|
"""Tests a case where the loss equals xent loss with multiple precisions.""" |
|
target_precision = [1.0, 1.0] |
|
num_labels = 2 |
|
batch_size = 20 |
|
target_shape = [batch_size, num_labels] |
|
logits = tf.Variable(tf.random_normal(target_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(target_shape), 0.7))) |
|
label_priors = tf.constant([0.34], shape=[num_labels]) |
|
|
|
loss, _ = loss_layers.recall_at_precision_loss( |
|
targets, |
|
logits, |
|
target_precision, |
|
label_priors=label_priors, |
|
surrogate_type='xent', |
|
) |
|
|
|
expected_loss = ( |
|
tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits( |
|
logits, targets)) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
loss_val, expected_val = session.run([loss, expected_loss]) |
|
self.assertAllClose(loss_val, expected_val) |
|
|
|
def testPositivesOnlyLoss(self): |
|
|
|
|
|
target_precision = 1.0 |
|
num_labels = 3 |
|
batch_shape = [30, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4))) |
|
label_priors = tf.constant(0.45, shape=[num_labels]) |
|
|
|
loss, _ = loss_layers.recall_at_precision_loss( |
|
targets, logits, target_precision, label_priors=label_priors, |
|
lambdas_initializer=tf.zeros_initializer()) |
|
expected_loss = util.weighted_sigmoid_cross_entropy_with_logits( |
|
targets, |
|
logits, |
|
positive_weights=1.0, |
|
negative_weights=0.0) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
loss_val, expected_val = session.run([loss, expected_loss]) |
|
self.assertAllClose(loss_val, expected_val) |
|
|
|
def testEquivalenceBetweenSingleAndMultiplePrecisions(self): |
|
"""Checks recall at precision with different precision values. |
|
|
|
Runs recall at precision with multiple precision values, and runs each label |
|
seperately with its own precision value as a scalar. Validates that the |
|
returned loss values are the same. |
|
""" |
|
target_precision = [0.2, 0.9, 0.4] |
|
num_labels = 3 |
|
batch_shape = [30, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4))) |
|
label_priors = tf.constant([0.45, 0.8, 0.3], shape=[num_labels]) |
|
|
|
multi_label_loss, _ = loss_layers.recall_at_precision_loss( |
|
targets, logits, target_precision, label_priors=label_priors, |
|
) |
|
|
|
single_label_losses = [ |
|
loss_layers.recall_at_precision_loss( |
|
tf.expand_dims(targets[:, i], -1), |
|
tf.expand_dims(logits[:, i], -1), |
|
target_precision[i], |
|
label_priors=label_priors[i])[0] |
|
for i in range(num_labels) |
|
] |
|
|
|
single_label_losses = tf.concat(single_label_losses, 1) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
multi_label_loss_val, single_label_loss_val = session.run( |
|
[multi_label_loss, single_label_losses]) |
|
self.assertAllClose(multi_label_loss_val, single_label_loss_val) |
|
|
|
def testEquivalenceBetweenSingleAndEqualMultiplePrecisions(self): |
|
"""Compares single and multiple target precisions with the same value. |
|
|
|
Checks that using a single target precision and multiple target precisions |
|
with the same value would result in the same loss value. |
|
""" |
|
num_labels = 2 |
|
target_shape = [20, num_labels] |
|
logits = tf.Variable(tf.random_normal(target_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(target_shape), 0.7))) |
|
label_priors = tf.constant([0.34], shape=[num_labels]) |
|
|
|
multi_precision_loss, _ = loss_layers.recall_at_precision_loss( |
|
targets, |
|
logits, |
|
[0.75, 0.75], |
|
label_priors=label_priors, |
|
surrogate_type='xent', |
|
) |
|
|
|
single_precision_loss, _ = loss_layers.recall_at_precision_loss( |
|
targets, |
|
logits, |
|
0.75, |
|
label_priors=label_priors, |
|
surrogate_type='xent', |
|
) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
multi_precision_loss_val, single_precision_loss_val = session.run( |
|
[multi_precision_loss, single_precision_loss]) |
|
self.assertAllClose(multi_precision_loss_val, single_precision_loss_val) |
|
|
|
def testLagrangeMultiplierUpdateDirection(self): |
|
for target_precision in [0.35, 0.65]: |
|
for surrogate_type in ['xent', 'hinge']: |
|
kwargs = {'target_precision': target_precision, |
|
'surrogate_type': surrogate_type, |
|
'scope': 'r-at-p_{}_{}'.format(target_precision, |
|
surrogate_type)} |
|
run_lagrange_multiplier_test( |
|
global_objective=loss_layers.recall_at_precision_loss, |
|
objective_kwargs=kwargs, |
|
data_builder=_multilabel_data, |
|
test_object=self) |
|
kwargs['scope'] = 'other-' + kwargs['scope'] |
|
run_lagrange_multiplier_test( |
|
global_objective=loss_layers.recall_at_precision_loss, |
|
objective_kwargs=kwargs, |
|
data_builder=_other_multilabel_data(surrogate_type), |
|
test_object=self) |
|
|
|
def testLagrangeMultiplierUpdateDirectionWithMultiplePrecisions(self): |
|
"""Runs Lagrange multiplier test with multiple precision values.""" |
|
target_precision = [0.65, 0.35] |
|
|
|
for surrogate_type in ['xent', 'hinge']: |
|
scope_str = 'r-at-p_{}_{}'.format( |
|
'_'.join([str(precision) for precision in target_precision]), |
|
surrogate_type) |
|
kwargs = { |
|
'target_precision': target_precision, |
|
'surrogate_type': surrogate_type, |
|
'scope': scope_str, |
|
} |
|
run_lagrange_multiplier_test( |
|
global_objective=loss_layers.recall_at_precision_loss, |
|
objective_kwargs=kwargs, |
|
data_builder=_multilabel_data, |
|
test_object=self) |
|
kwargs['scope'] = 'other-' + kwargs['scope'] |
|
run_lagrange_multiplier_test( |
|
global_objective=loss_layers.recall_at_precision_loss, |
|
objective_kwargs=kwargs, |
|
data_builder=_other_multilabel_data(surrogate_type), |
|
test_object=self) |
|
|
|
|
|
class PrecisionAtRecallTest(tf.test.TestCase): |
|
|
|
def testCrossEntropyEquivalence(self): |
|
|
|
target_recall = 1.0 |
|
num_labels = 3 |
|
batch_shape = [10, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4))) |
|
|
|
loss, _ = loss_layers.precision_at_recall_loss( |
|
targets, logits, target_recall, |
|
lambdas_initializer=tf.constant_initializer(1.0)) |
|
expected_loss = util.weighted_sigmoid_cross_entropy_with_logits( |
|
targets, logits) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(loss.eval(), expected_loss.eval()) |
|
|
|
def testNegativesOnlyLoss(self): |
|
|
|
|
|
target_recall = 0.61828 |
|
num_labels = 4 |
|
batch_shape = [8, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.6))) |
|
|
|
loss, _ = loss_layers.precision_at_recall_loss( |
|
targets, |
|
logits, |
|
target_recall, |
|
surrogate_type='hinge', |
|
lambdas_initializer=tf.constant_initializer(0.0), |
|
scope='negatives_only_test') |
|
expected_loss = util.weighted_hinge_loss( |
|
targets, logits, positive_weights=0.0, negative_weights=1.0) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(expected_loss.eval(), loss.eval()) |
|
|
|
def testLagrangeMultiplierUpdateDirection(self): |
|
for target_recall in [0.34, 0.66]: |
|
for surrogate_type in ['xent', 'hinge']: |
|
kwargs = {'target_recall': target_recall, |
|
'dual_rate_factor': 1.0, |
|
'surrogate_type': surrogate_type, |
|
'scope': 'p-at-r_{}_{}'.format(target_recall, surrogate_type)} |
|
|
|
run_lagrange_multiplier_test( |
|
global_objective=loss_layers.precision_at_recall_loss, |
|
objective_kwargs=kwargs, |
|
data_builder=_multilabel_data, |
|
test_object=self) |
|
kwargs['scope'] = 'other-' + kwargs['scope'] |
|
run_lagrange_multiplier_test( |
|
global_objective=loss_layers.precision_at_recall_loss, |
|
objective_kwargs=kwargs, |
|
data_builder=_other_multilabel_data(surrogate_type), |
|
test_object=self) |
|
|
|
def testCrossEntropyEquivalenceWithMultipleRecalls(self): |
|
"""Checks a case where the loss equals xent loss with multiple recalls.""" |
|
num_labels = 3 |
|
target_recall = [1.0] * num_labels |
|
batch_shape = [10, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4))) |
|
|
|
loss, _ = loss_layers.precision_at_recall_loss( |
|
targets, logits, target_recall, |
|
lambdas_initializer=tf.constant_initializer(1.0)) |
|
expected_loss = util.weighted_sigmoid_cross_entropy_with_logits( |
|
targets, logits) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(loss.eval(), expected_loss.eval()) |
|
|
|
def testNegativesOnlyLossWithMultipleRecalls(self): |
|
"""Tests a case where the loss equals the loss on the negative examples. |
|
|
|
Checks this special case using multiple target recall values. |
|
""" |
|
num_labels = 4 |
|
target_recall = [0.61828] * num_labels |
|
batch_shape = [8, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.6))) |
|
|
|
loss, _ = loss_layers.precision_at_recall_loss( |
|
targets, |
|
logits, |
|
target_recall, |
|
surrogate_type='hinge', |
|
lambdas_initializer=tf.constant_initializer(0.0), |
|
scope='negatives_only_test') |
|
expected_loss = util.weighted_hinge_loss( |
|
targets, logits, positive_weights=0.0, negative_weights=1.0) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(expected_loss.eval(), loss.eval()) |
|
|
|
def testLagrangeMultiplierUpdateDirectionWithMultipleRecalls(self): |
|
"""Runs Lagrange multiplier test with multiple recall values.""" |
|
target_recall = [0.34, 0.66] |
|
for surrogate_type in ['xent', 'hinge']: |
|
scope_str = 'p-at-r_{}_{}'.format( |
|
'_'.join([str(recall) for recall in target_recall]), |
|
surrogate_type) |
|
kwargs = {'target_recall': target_recall, |
|
'dual_rate_factor': 1.0, |
|
'surrogate_type': surrogate_type, |
|
'scope': scope_str} |
|
|
|
run_lagrange_multiplier_test( |
|
global_objective=loss_layers.precision_at_recall_loss, |
|
objective_kwargs=kwargs, |
|
data_builder=_multilabel_data, |
|
test_object=self) |
|
kwargs['scope'] = 'other-' + kwargs['scope'] |
|
run_lagrange_multiplier_test( |
|
global_objective=loss_layers.precision_at_recall_loss, |
|
objective_kwargs=kwargs, |
|
data_builder=_other_multilabel_data(surrogate_type), |
|
test_object=self) |
|
|
|
def testEquivalenceBetweenSingleAndMultipleRecalls(self): |
|
"""Checks precision at recall with multiple different recall values. |
|
|
|
Runs precision at recall with multiple recall values, and runs each label |
|
seperately with its own recall value as a scalar. Validates that the |
|
returned loss values are the same. |
|
""" |
|
target_precision = [0.7, 0.9, 0.4] |
|
num_labels = 3 |
|
batch_shape = [30, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4))) |
|
label_priors = tf.constant(0.45, shape=[num_labels]) |
|
|
|
multi_label_loss, _ = loss_layers.precision_at_recall_loss( |
|
targets, logits, target_precision, label_priors=label_priors |
|
) |
|
|
|
single_label_losses = [ |
|
loss_layers.precision_at_recall_loss( |
|
tf.expand_dims(targets[:, i], -1), |
|
tf.expand_dims(logits[:, i], -1), |
|
target_precision[i], |
|
label_priors=label_priors[i])[0] |
|
for i in range(num_labels) |
|
] |
|
|
|
single_label_losses = tf.concat(single_label_losses, 1) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
multi_label_loss_val, single_label_loss_val = session.run( |
|
[multi_label_loss, single_label_losses]) |
|
self.assertAllClose(multi_label_loss_val, single_label_loss_val) |
|
|
|
def testEquivalenceBetweenSingleAndEqualMultipleRecalls(self): |
|
"""Compares single and multiple target recalls of the same value. |
|
|
|
Checks that using a single target recall and multiple recalls with the |
|
same value would result in the same loss value. |
|
""" |
|
num_labels = 2 |
|
target_shape = [20, num_labels] |
|
logits = tf.Variable(tf.random_normal(target_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(target_shape), 0.7))) |
|
label_priors = tf.constant([0.34], shape=[num_labels]) |
|
|
|
multi_precision_loss, _ = loss_layers.precision_at_recall_loss( |
|
targets, |
|
logits, |
|
[0.75, 0.75], |
|
label_priors=label_priors, |
|
surrogate_type='xent', |
|
) |
|
|
|
single_precision_loss, _ = loss_layers.precision_at_recall_loss( |
|
targets, |
|
logits, |
|
0.75, |
|
label_priors=label_priors, |
|
surrogate_type='xent', |
|
) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
multi_precision_loss_val, single_precision_loss_val = session.run( |
|
[multi_precision_loss, single_precision_loss]) |
|
self.assertAllClose(multi_precision_loss_val, single_precision_loss_val) |
|
|
|
|
|
class FalsePositiveRateAtTruePositiveRateTest(tf.test.TestCase): |
|
|
|
def testNegativesOnlyLoss(self): |
|
|
|
|
|
target_recall = 0.6 |
|
num_labels = 3 |
|
batch_shape = [3, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4))) |
|
label_priors = tf.constant(numpy.random.uniform(size=[num_labels]), |
|
dtype=tf.float32) |
|
|
|
xent_loss, _ = loss_layers.false_positive_rate_at_true_positive_rate_loss( |
|
targets, logits, target_recall, label_priors=label_priors, |
|
lambdas_initializer=tf.constant_initializer(0.0)) |
|
xent_expected = util.weighted_sigmoid_cross_entropy_with_logits( |
|
targets, |
|
logits, |
|
positive_weights=0.0, |
|
negative_weights=1.0) |
|
hinge_loss, _ = loss_layers.false_positive_rate_at_true_positive_rate_loss( |
|
targets, logits, target_recall, label_priors=label_priors, |
|
lambdas_initializer=tf.constant_initializer(0.0), |
|
surrogate_type='hinge') |
|
hinge_expected = util.weighted_hinge_loss( |
|
targets, |
|
logits, |
|
positive_weights=0.0, |
|
negative_weights=1.0) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
xent_val, xent_expected = session.run([xent_loss, xent_expected]) |
|
self.assertAllClose(xent_val, xent_expected) |
|
hinge_val, hinge_expected = session.run([hinge_loss, hinge_expected]) |
|
self.assertAllClose(hinge_val, hinge_expected) |
|
|
|
def testPositivesOnlyLoss(self): |
|
|
|
|
|
target_recall = 1.0 |
|
num_labels = 5 |
|
batch_shape = [5, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.ones_like(logits) |
|
label_priors = tf.constant(numpy.random.uniform(size=[num_labels]), |
|
dtype=tf.float32) |
|
|
|
loss, _ = loss_layers.false_positive_rate_at_true_positive_rate_loss( |
|
targets, logits, target_recall, label_priors=label_priors) |
|
expected_loss = tf.nn.sigmoid_cross_entropy_with_logits( |
|
labels=targets, logits=logits) |
|
hinge_loss, _ = loss_layers.false_positive_rate_at_true_positive_rate_loss( |
|
targets, logits, target_recall, label_priors=label_priors, |
|
surrogate_type='hinge') |
|
expected_hinge = util.weighted_hinge_loss( |
|
targets, logits) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(loss.eval(), expected_loss.eval()) |
|
self.assertAllClose(hinge_loss.eval(), expected_hinge.eval()) |
|
|
|
def testEqualWeightLoss(self): |
|
|
|
|
|
target_recall = 1.0 |
|
num_labels = 4 |
|
batch_shape = [40, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.6))) |
|
label_priors = tf.constant(0.5, shape=[num_labels]) |
|
|
|
loss, _ = loss_layers.false_positive_rate_at_true_positive_rate_loss( |
|
targets, logits, target_recall, label_priors=label_priors) |
|
expected_loss = tf.nn.sigmoid_cross_entropy_with_logits( |
|
labels=targets, logits=logits) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(loss.eval(), expected_loss.eval()) |
|
|
|
def testLagrangeMultiplierUpdateDirection(self): |
|
for target_rate in [0.35, 0.65]: |
|
for surrogate_type in ['xent', 'hinge']: |
|
kwargs = {'target_rate': target_rate, |
|
'surrogate_type': surrogate_type, |
|
'scope': 'fpr-at-tpr_{}_{}'.format(target_rate, |
|
surrogate_type)} |
|
|
|
|
|
run_lagrange_multiplier_test( |
|
global_objective=( |
|
loss_layers.false_positive_rate_at_true_positive_rate_loss), |
|
objective_kwargs=kwargs, |
|
data_builder=_multilabel_data, |
|
test_object=self) |
|
kwargs['scope'] = 'other-' + kwargs['scope'] |
|
run_lagrange_multiplier_test( |
|
global_objective=( |
|
loss_layers.false_positive_rate_at_true_positive_rate_loss), |
|
objective_kwargs=kwargs, |
|
data_builder=_other_multilabel_data(surrogate_type), |
|
test_object=self) |
|
|
|
def testLagrangeMultiplierUpdateDirectionWithMultipleRates(self): |
|
"""Runs Lagrange multiplier test with multiple target rates.""" |
|
target_rate = [0.35, 0.65] |
|
for surrogate_type in ['xent', 'hinge']: |
|
kwargs = {'target_rate': target_rate, |
|
'surrogate_type': surrogate_type, |
|
'scope': 'fpr-at-tpr_{}_{}'.format( |
|
'_'.join([str(target) for target in target_rate]), |
|
surrogate_type)} |
|
|
|
|
|
run_lagrange_multiplier_test( |
|
global_objective=( |
|
loss_layers.false_positive_rate_at_true_positive_rate_loss), |
|
objective_kwargs=kwargs, |
|
data_builder=_multilabel_data, |
|
test_object=self) |
|
kwargs['scope'] = 'other-' + kwargs['scope'] |
|
run_lagrange_multiplier_test( |
|
global_objective=( |
|
loss_layers.false_positive_rate_at_true_positive_rate_loss), |
|
objective_kwargs=kwargs, |
|
data_builder=_other_multilabel_data(surrogate_type), |
|
test_object=self) |
|
|
|
def testEquivalenceBetweenSingleAndEqualMultipleRates(self): |
|
"""Compares single and multiple target rates of the same value. |
|
|
|
Checks that using a single target rate and multiple rates with the |
|
same value would result in the same loss value. |
|
""" |
|
num_labels = 2 |
|
target_shape = [20, num_labels] |
|
logits = tf.Variable(tf.random_normal(target_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(target_shape), 0.7))) |
|
label_priors = tf.constant([0.34], shape=[num_labels]) |
|
|
|
multi_label_loss, _ = ( |
|
loss_layers.false_positive_rate_at_true_positive_rate_loss( |
|
targets, logits, [0.75, 0.75], label_priors=label_priors)) |
|
|
|
single_label_loss, _ = ( |
|
loss_layers.false_positive_rate_at_true_positive_rate_loss( |
|
targets, logits, 0.75, label_priors=label_priors)) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
multi_label_loss_val, single_label_loss_val = session.run( |
|
[multi_label_loss, single_label_loss]) |
|
self.assertAllClose(multi_label_loss_val, single_label_loss_val) |
|
|
|
def testEquivalenceBetweenSingleAndMultipleRates(self): |
|
"""Compares single and multiple target rates of different values. |
|
|
|
Runs false_positive_rate_at_true_positive_rate_loss with multiple target |
|
rates, and runs each label seperately with its own target rate as a |
|
scalar. Validates that the returned loss values are the same. |
|
""" |
|
target_precision = [0.7, 0.9, 0.4] |
|
num_labels = 3 |
|
batch_shape = [30, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4))) |
|
label_priors = tf.constant(0.45, shape=[num_labels]) |
|
|
|
multi_label_loss, _ = ( |
|
loss_layers.false_positive_rate_at_true_positive_rate_loss( |
|
targets, logits, target_precision, label_priors=label_priors)) |
|
|
|
single_label_losses = [ |
|
loss_layers.false_positive_rate_at_true_positive_rate_loss( |
|
tf.expand_dims(targets[:, i], -1), |
|
tf.expand_dims(logits[:, i], -1), |
|
target_precision[i], |
|
label_priors=label_priors[i])[0] |
|
for i in range(num_labels) |
|
] |
|
|
|
single_label_losses = tf.concat(single_label_losses, 1) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
multi_label_loss_val, single_label_loss_val = session.run( |
|
[multi_label_loss, single_label_losses]) |
|
self.assertAllClose(multi_label_loss_val, single_label_loss_val) |
|
|
|
|
|
class TruePositiveRateAtFalsePositiveRateTest(tf.test.TestCase): |
|
|
|
def testPositivesOnlyLoss(self): |
|
|
|
|
|
target_rate = numpy.random.uniform() |
|
num_labels = 3 |
|
batch_shape = [20, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.6))) |
|
label_priors = tf.constant(numpy.random.uniform(size=[num_labels]), |
|
dtype=tf.float32) |
|
|
|
xent_loss, _ = loss_layers.true_positive_rate_at_false_positive_rate_loss( |
|
targets, logits, target_rate, label_priors=label_priors, |
|
lambdas_initializer=tf.constant_initializer(0.0)) |
|
xent_expected = util.weighted_sigmoid_cross_entropy_with_logits( |
|
targets, |
|
logits, |
|
positive_weights=1.0, |
|
negative_weights=0.0) |
|
hinge_loss, _ = loss_layers.true_positive_rate_at_false_positive_rate_loss( |
|
targets, logits, target_rate, label_priors=label_priors, |
|
lambdas_initializer=tf.constant_initializer(0.0), |
|
surrogate_type='hinge') |
|
hinge_expected = util.weighted_hinge_loss( |
|
targets, |
|
logits, |
|
positive_weights=1.0, |
|
negative_weights=0.0) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(xent_expected.eval(), xent_loss.eval()) |
|
self.assertAllClose(hinge_expected.eval(), hinge_loss.eval()) |
|
|
|
def testNegativesOnlyLoss(self): |
|
|
|
|
|
target_rate = numpy.random.uniform() |
|
num_labels = 3 |
|
batch_shape = [25, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.zeros_like(logits) |
|
label_priors = tf.constant(numpy.random.uniform(size=[num_labels]), |
|
dtype=tf.float32) |
|
|
|
xent_loss, _ = loss_layers.true_positive_rate_at_false_positive_rate_loss( |
|
targets, logits, target_rate, label_priors=label_priors) |
|
xent_expected = tf.subtract( |
|
util.weighted_sigmoid_cross_entropy_with_logits(targets, |
|
logits, |
|
positive_weights=0.0, |
|
negative_weights=1.0), |
|
target_rate * (1.0 - label_priors) * numpy.log(2)) |
|
hinge_loss, _ = loss_layers.true_positive_rate_at_false_positive_rate_loss( |
|
targets, logits, target_rate, label_priors=label_priors, |
|
surrogate_type='hinge') |
|
hinge_expected = util.weighted_hinge_loss( |
|
targets, logits) - target_rate * (1.0 - label_priors) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(xent_expected.eval(), xent_loss.eval()) |
|
self.assertAllClose(hinge_expected.eval(), hinge_loss.eval()) |
|
|
|
def testLagrangeMultiplierUpdateDirection(self): |
|
for target_rate in [0.35, 0.65]: |
|
for surrogate_type in ['xent', 'hinge']: |
|
kwargs = {'target_rate': target_rate, |
|
'surrogate_type': surrogate_type, |
|
'scope': 'tpr-at-fpr_{}_{}'.format(target_rate, |
|
surrogate_type)} |
|
run_lagrange_multiplier_test( |
|
global_objective=( |
|
loss_layers.true_positive_rate_at_false_positive_rate_loss), |
|
objective_kwargs=kwargs, |
|
data_builder=_multilabel_data, |
|
test_object=self) |
|
kwargs['scope'] = 'other-' + kwargs['scope'] |
|
run_lagrange_multiplier_test( |
|
global_objective=( |
|
loss_layers.true_positive_rate_at_false_positive_rate_loss), |
|
objective_kwargs=kwargs, |
|
data_builder=_other_multilabel_data(surrogate_type), |
|
test_object=self) |
|
|
|
def testLagrangeMultiplierUpdateDirectionWithMultipleRates(self): |
|
"""Runs Lagrange multiplier test with multiple target rates.""" |
|
target_rate = [0.35, 0.65] |
|
for surrogate_type in ['xent', 'hinge']: |
|
kwargs = {'target_rate': target_rate, |
|
'surrogate_type': surrogate_type, |
|
'scope': 'tpr-at-fpr_{}_{}'.format( |
|
'_'.join([str(target) for target in target_rate]), |
|
surrogate_type)} |
|
run_lagrange_multiplier_test( |
|
global_objective=( |
|
loss_layers.true_positive_rate_at_false_positive_rate_loss), |
|
objective_kwargs=kwargs, |
|
data_builder=_multilabel_data, |
|
test_object=self) |
|
kwargs['scope'] = 'other-' + kwargs['scope'] |
|
run_lagrange_multiplier_test( |
|
global_objective=( |
|
loss_layers.true_positive_rate_at_false_positive_rate_loss), |
|
objective_kwargs=kwargs, |
|
data_builder=_other_multilabel_data(surrogate_type), |
|
test_object=self) |
|
|
|
def testEquivalenceBetweenSingleAndEqualMultipleRates(self): |
|
"""Compares single and multiple target rates of the same value. |
|
|
|
Checks that using a single target rate and multiple rates with the |
|
same value would result in the same loss value. |
|
""" |
|
num_labels = 2 |
|
target_shape = [20, num_labels] |
|
logits = tf.Variable(tf.random_normal(target_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(target_shape), 0.7))) |
|
label_priors = tf.constant([0.34], shape=[num_labels]) |
|
|
|
multi_label_loss, _ = ( |
|
loss_layers.true_positive_rate_at_false_positive_rate_loss( |
|
targets, logits, [0.75, 0.75], label_priors=label_priors)) |
|
|
|
single_label_loss, _ = ( |
|
loss_layers.true_positive_rate_at_false_positive_rate_loss( |
|
targets, logits, 0.75, label_priors=label_priors)) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
multi_label_loss_val, single_label_loss_val = session.run( |
|
[multi_label_loss, single_label_loss]) |
|
self.assertAllClose(multi_label_loss_val, single_label_loss_val) |
|
|
|
def testEquivalenceBetweenSingleAndMultipleRates(self): |
|
"""Compares single and multiple target rates of different values. |
|
|
|
Runs true_positive_rate_at_false_positive_rate_loss with multiple target |
|
rates, and runs each label seperately with its own target rate as a |
|
scalar. Validates that the returned loss values are the same. |
|
""" |
|
target_precision = [0.7, 0.9, 0.4] |
|
num_labels = 3 |
|
batch_shape = [30, num_labels] |
|
logits = tf.Variable(tf.random_normal(batch_shape)) |
|
targets = tf.Variable( |
|
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4))) |
|
label_priors = tf.constant(0.45, shape=[num_labels]) |
|
|
|
multi_label_loss, _ = ( |
|
loss_layers.true_positive_rate_at_false_positive_rate_loss( |
|
targets, logits, target_precision, label_priors=label_priors)) |
|
|
|
single_label_losses = [ |
|
loss_layers.true_positive_rate_at_false_positive_rate_loss( |
|
tf.expand_dims(targets[:, i], -1), |
|
tf.expand_dims(logits[:, i], -1), |
|
target_precision[i], |
|
label_priors=label_priors[i])[0] |
|
for i in range(num_labels) |
|
] |
|
|
|
single_label_losses = tf.concat(single_label_losses, 1) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
multi_label_loss_val, single_label_loss_val = session.run( |
|
[multi_label_loss, single_label_losses]) |
|
self.assertAllClose(multi_label_loss_val, single_label_loss_val) |
|
|
|
|
|
class UtilityFunctionsTest(tf.test.TestCase): |
|
|
|
def testTrainableDualVariable(self): |
|
|
|
x = tf.get_variable('primal', dtype=tf.float32, initializer=2.0) |
|
y_value, y = loss_layers._create_dual_variable( |
|
'dual', shape=None, dtype=tf.float32, initializer=1.0, collections=None, |
|
trainable=True, dual_rate_factor=0.3) |
|
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) |
|
update = optimizer.minimize(0.5 * tf.square(x - y_value)) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
update.run() |
|
self.assertAllClose(0.7, y.eval()) |
|
|
|
def testUntrainableDualVariable(self): |
|
|
|
x = tf.get_variable('primal', dtype=tf.float32, initializer=-2.0) |
|
y_value, y = loss_layers._create_dual_variable( |
|
'dual', shape=None, dtype=tf.float32, initializer=1.0, collections=None, |
|
trainable=False, dual_rate_factor=0.8) |
|
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) |
|
update = optimizer.minimize(tf.square(x) * y_value + tf.exp(y_value)) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
update.run() |
|
self.assertAllClose(1.0, y.eval()) |
|
|
|
|
|
class BoundTest(parameterized.TestCase, tf.test.TestCase): |
|
|
|
@parameterized.named_parameters( |
|
('_xent', 'xent', 1.0, [2.0, 1.0]), |
|
('_xent_weighted', 'xent', |
|
numpy.array([0, 2, 0.5, 1, 2, 3]).reshape(6, 1), [2.5, 0]), |
|
('_hinge', 'hinge', 1.0, [2.0, 1.0]), |
|
('_hinge_weighted', 'hinge', |
|
numpy.array([1.0, 2, 3, 4, 5, 6]).reshape(6, 1), [5.0, 1])) |
|
def testLowerBoundMultilabel(self, surrogate_type, weights, expected): |
|
labels, logits, _ = _multilabel_data() |
|
lower_bound = loss_layers.true_positives_lower_bound( |
|
labels, logits, weights, surrogate_type) |
|
|
|
with self.test_session(): |
|
self.assertAllClose(lower_bound.eval(), expected) |
|
|
|
@parameterized.named_parameters( |
|
('_xent', 'xent'), ('_hinge', 'hinge')) |
|
def testLowerBoundOtherMultilabel(self, surrogate_type): |
|
labels, logits, _ = _other_multilabel_data(surrogate_type)() |
|
lower_bound = loss_layers.true_positives_lower_bound( |
|
labels, logits, 1.0, surrogate_type) |
|
|
|
with self.test_session(): |
|
self.assertAllClose(lower_bound.eval(), [4.0, 2.0], atol=1e-5) |
|
|
|
@parameterized.named_parameters( |
|
('_xent', 'xent', 1.0, [1.0, 2.0]), |
|
('_xent_weighted', 'xent', |
|
numpy.array([3.0, 2, 1, 0, 1, 2]).reshape(6, 1), [2.0, 1.0]), |
|
('_hinge', 'hinge', 1.0, [1.0, 2.0]), |
|
('_hinge_weighted', 'hinge', |
|
numpy.array([13, 12, 11, 0.5, 0, 0.5]).reshape(6, 1), [0.5, 0.5])) |
|
def testUpperBoundMultilabel(self, surrogate_type, weights, expected): |
|
labels, logits, _ = _multilabel_data() |
|
upper_bound = loss_layers.false_positives_upper_bound( |
|
labels, logits, weights, surrogate_type) |
|
|
|
with self.test_session(): |
|
self.assertAllClose(upper_bound.eval(), expected) |
|
|
|
@parameterized.named_parameters( |
|
('_xent', 'xent'), ('_hinge', 'hinge')) |
|
def testUpperBoundOtherMultilabel(self, surrogate_type): |
|
labels, logits, _ = _other_multilabel_data(surrogate_type)() |
|
upper_bound = loss_layers.false_positives_upper_bound( |
|
labels, logits, 1.0, surrogate_type) |
|
|
|
with self.test_session(): |
|
self.assertAllClose(upper_bound.eval(), [2.0, 4.0], atol=1e-5) |
|
|
|
@parameterized.named_parameters( |
|
('_lower', 'lower'), ('_upper', 'upper')) |
|
def testThreeDimensionalLogits(self, bound): |
|
bound_function = loss_layers.false_positives_upper_bound |
|
if bound == 'lower': |
|
bound_function = loss_layers.true_positives_lower_bound |
|
random_labels = numpy.float32(numpy.random.uniform(size=[2, 3]) > 0.5) |
|
random_logits = numpy.float32(numpy.random.randn(2, 3, 2)) |
|
first_slice_logits = random_logits[:, :, 0].reshape(2, 3) |
|
second_slice_logits = random_logits[:, :, 1].reshape(2, 3) |
|
|
|
full_bound = bound_function( |
|
tf.constant(random_labels), tf.constant(random_logits), 1.0, 'xent') |
|
first_slice_bound = bound_function(tf.constant(random_labels), |
|
tf.constant(first_slice_logits), |
|
1.0, |
|
'xent') |
|
second_slice_bound = bound_function(tf.constant(random_labels), |
|
tf.constant(second_slice_logits), |
|
1.0, |
|
'xent') |
|
stacked_bound = tf.stack([first_slice_bound, second_slice_bound], axis=1) |
|
|
|
with self.test_session(): |
|
self.assertAllClose(full_bound.eval(), stacked_bound.eval()) |
|
|
|
|
|
def run_lagrange_multiplier_test(global_objective, |
|
objective_kwargs, |
|
data_builder, |
|
test_object): |
|
"""Runs a test for the Lagrange multiplier update of `global_objective`. |
|
|
|
The test checks that the constraint for `global_objective` is satisfied on |
|
the first label of the data produced by `data_builder` but not the second. |
|
|
|
Args: |
|
global_objective: One of the global objectives. |
|
objective_kwargs: A dictionary of keyword arguments to pass to |
|
`global_objective`. Must contain an entry for the constraint argument |
|
of `global_objective`, e.g. 'target_rate' or 'target_precision'. |
|
data_builder: A function which returns tensors corresponding to labels, |
|
logits, and label priors. |
|
test_object: An instance of tf.test.TestCase. |
|
""" |
|
|
|
kwargs = dict(objective_kwargs) |
|
targets, logits, priors = data_builder() |
|
kwargs['labels'] = targets |
|
kwargs['logits'] = logits |
|
kwargs['label_priors'] = priors |
|
|
|
loss, output_dict = global_objective(**kwargs) |
|
lambdas = tf.squeeze(output_dict['lambdas']) |
|
opt = tf.train.GradientDescentOptimizer(learning_rate=0.1) |
|
update_op = opt.minimize(loss, var_list=[output_dict['lambdas']]) |
|
|
|
with test_object.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
lambdas_before = session.run(lambdas) |
|
session.run(update_op) |
|
lambdas_after = session.run(lambdas) |
|
test_object.assertLess(lambdas_after[0], lambdas_before[0]) |
|
test_object.assertGreater(lambdas_after[1], lambdas_before[1]) |
|
|
|
|
|
class CrossFunctionTest(parameterized.TestCase, tf.test.TestCase): |
|
|
|
@parameterized.named_parameters( |
|
('_auc01xent', loss_layers.precision_recall_auc_loss, { |
|
'precision_range': (0.0, 1.0), 'surrogate_type': 'xent' |
|
}), |
|
('_auc051xent', loss_layers.precision_recall_auc_loss, { |
|
'precision_range': (0.5, 1.0), 'surrogate_type': 'xent' |
|
}), |
|
('_auc01)hinge', loss_layers.precision_recall_auc_loss, { |
|
'precision_range': (0.0, 1.0), 'surrogate_type': 'hinge' |
|
}), |
|
('_ratp04', loss_layers.recall_at_precision_loss, { |
|
'target_precision': 0.4, 'surrogate_type': 'xent' |
|
}), |
|
('_ratp066', loss_layers.recall_at_precision_loss, { |
|
'target_precision': 0.66, 'surrogate_type': 'xent' |
|
}), |
|
('_ratp07_hinge', loss_layers.recall_at_precision_loss, { |
|
'target_precision': 0.7, 'surrogate_type': 'hinge' |
|
}), |
|
('_fpattp066', loss_layers.false_positive_rate_at_true_positive_rate_loss, |
|
{'target_rate': 0.66, 'surrogate_type': 'xent'}), |
|
('_fpattp046', loss_layers.false_positive_rate_at_true_positive_rate_loss, |
|
{ |
|
'target_rate': 0.46, 'surrogate_type': 'xent' |
|
}), |
|
('_fpattp076_hinge', |
|
loss_layers.false_positive_rate_at_true_positive_rate_loss, { |
|
'target_rate': 0.76, 'surrogate_type': 'hinge' |
|
}), |
|
('_fpattp036_hinge', |
|
loss_layers.false_positive_rate_at_true_positive_rate_loss, { |
|
'target_rate': 0.36, 'surrogate_type': 'hinge' |
|
}), |
|
) |
|
def testWeigtedGlobalObjective(self, |
|
global_objective, |
|
objective_kwargs): |
|
"""Runs a test of `global_objective` with per-example weights. |
|
|
|
Args: |
|
global_objective: One of the global objectives. |
|
objective_kwargs: A dictionary of keyword arguments to pass to |
|
`global_objective`. Must contain keys 'surrogate_type', and the keyword |
|
for the constraint argument of `global_objective`, e.g. 'target_rate' or |
|
'target_precision'. |
|
""" |
|
logits_positives = tf.constant([1, -0.5, 3], shape=[3, 1]) |
|
logits_negatives = tf.constant([-0.5, 1, -1, -1, -0.5, 1], shape=[6, 1]) |
|
|
|
|
|
dummy = tf.constant(1.0) |
|
logits = tf.concat([logits_positives, logits_negatives], 0) |
|
logits = tf.multiply(logits, dummy) |
|
targets = tf.constant([1, 1, 1, 0, 0, 0, 0, 0, 0], |
|
shape=[9, 1], dtype=tf.float32) |
|
priors = tf.constant(1.0/3.0, shape=[1]) |
|
weights = tf.constant([1, 1, 1, 0, 0, 0, 2, 2, 2], |
|
shape=[9, 1], dtype=tf.float32) |
|
|
|
|
|
objective_kwargs['labels'] = targets |
|
objective_kwargs['logits'] = logits |
|
objective_kwargs['label_priors'] = priors |
|
|
|
scope = 'weighted_test' |
|
|
|
objective_kwargs['scope'] = scope + '_plain' |
|
raw_loss, update = global_objective(**objective_kwargs) |
|
loss = tf.reduce_sum(raw_loss) |
|
|
|
|
|
objective_kwargs['weights'] = weights |
|
objective_kwargs['scope'] = scope + '_weighted' |
|
raw_weighted_loss, weighted_update = global_objective(**objective_kwargs) |
|
weighted_loss = tf.reduce_sum(raw_weighted_loss) |
|
|
|
lambdas = tf.contrib.framework.get_unique_variable(scope + '_plain/lambdas') |
|
weighted_lambdas = tf.contrib.framework.get_unique_variable( |
|
scope + '_weighted/lambdas') |
|
logits_gradient = tf.gradients(loss, dummy) |
|
weighted_logits_gradient = tf.gradients(weighted_loss, dummy) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(loss.eval(), weighted_loss.eval()) |
|
|
|
logits_grad, weighted_logits_grad = session.run( |
|
[logits_gradient, weighted_logits_gradient]) |
|
self.assertAllClose(logits_grad, weighted_logits_grad) |
|
|
|
session.run([update, weighted_update]) |
|
lambdas_value, weighted_lambdas_value = session.run( |
|
[lambdas, weighted_lambdas]) |
|
self.assertAllClose(lambdas_value, weighted_lambdas_value) |
|
|
|
@parameterized.named_parameters( |
|
('_prauc051xent', loss_layers.precision_recall_auc_loss, { |
|
'precision_range': (0.5, 1.0), 'surrogate_type': 'xent' |
|
}), |
|
('_prauc01hinge', loss_layers.precision_recall_auc_loss, { |
|
'precision_range': (0.0, 1.0), 'surrogate_type': 'hinge' |
|
}), |
|
('_rocxent', loss_layers.roc_auc_loss, {'surrogate_type': 'xent'}), |
|
('_rochinge', loss_layers.roc_auc_loss, {'surrogate_type': 'xent'}), |
|
('_ratp04', loss_layers.recall_at_precision_loss, { |
|
'target_precision': 0.4, 'surrogate_type': 'xent' |
|
}), |
|
('_ratp07_hinge', loss_layers.recall_at_precision_loss, { |
|
'target_precision': 0.7, 'surrogate_type': 'hinge' |
|
}), |
|
('_patr05', loss_layers.precision_at_recall_loss, { |
|
'target_recall': 0.4, 'surrogate_type': 'xent' |
|
}), |
|
('_patr08_hinge', loss_layers.precision_at_recall_loss, { |
|
'target_recall': 0.7, 'surrogate_type': 'hinge' |
|
}), |
|
('_fpattp046', loss_layers.false_positive_rate_at_true_positive_rate_loss, |
|
{ |
|
'target_rate': 0.46, 'surrogate_type': 'xent' |
|
}), |
|
('_fpattp036_hinge', |
|
loss_layers.false_positive_rate_at_true_positive_rate_loss, { |
|
'target_rate': 0.36, 'surrogate_type': 'hinge' |
|
}), |
|
('_tpatfp076', loss_layers.true_positive_rate_at_false_positive_rate_loss, |
|
{ |
|
'target_rate': 0.76, 'surrogate_type': 'xent' |
|
}), |
|
('_tpatfp036_hinge', |
|
loss_layers.true_positive_rate_at_false_positive_rate_loss, { |
|
'target_rate': 0.36, 'surrogate_type': 'hinge' |
|
}), |
|
) |
|
def testVectorAndMatrixLabelEquivalence(self, |
|
global_objective, |
|
objective_kwargs): |
|
"""Tests equivalence between label shape [batch_size] or [batch_size, 1].""" |
|
vector_labels = tf.constant([1.0, 1.0, 0.0, 0.0], shape=[4]) |
|
vector_logits = tf.constant([1.0, 0.1, 0.1, -1.0], shape=[4]) |
|
|
|
|
|
vector_kwargs = objective_kwargs.copy() |
|
vector_kwargs['labels'] = vector_labels |
|
vector_kwargs['logits'] = vector_logits |
|
vector_loss, _ = global_objective(**vector_kwargs) |
|
vector_loss_sum = tf.reduce_sum(vector_loss) |
|
|
|
|
|
matrix_kwargs = objective_kwargs.copy() |
|
matrix_kwargs['labels'] = tf.expand_dims(vector_labels, 1) |
|
matrix_kwargs['logits'] = tf.expand_dims(vector_logits, 1) |
|
matrix_loss, _ = global_objective(**matrix_kwargs) |
|
matrix_loss_sum = tf.reduce_sum(matrix_loss) |
|
|
|
self.assertEqual(1, vector_loss.get_shape().ndims) |
|
self.assertEqual(2, matrix_loss.get_shape().ndims) |
|
|
|
with self.test_session(): |
|
tf.global_variables_initializer().run() |
|
self.assertAllClose(vector_loss_sum.eval(), matrix_loss_sum.eval()) |
|
|
|
@parameterized.named_parameters( |
|
('_prauc', loss_layers.precision_recall_auc_loss, None), |
|
('_roc', loss_layers.roc_auc_loss, None), |
|
('_rap', loss_layers.recall_at_precision_loss, {'target_precision': 0.8}), |
|
('_patr', loss_layers.precision_at_recall_loss, {'target_recall': 0.7}), |
|
('_fpattp', loss_layers.false_positive_rate_at_true_positive_rate_loss, |
|
{'target_rate': 0.9}), |
|
('_tpatfp', loss_layers.true_positive_rate_at_false_positive_rate_loss, |
|
{'target_rate': 0.1}) |
|
) |
|
def testUnknownBatchSize(self, global_objective, objective_kwargs): |
|
|
|
batch_shape = [5, 2] |
|
logits = tf.placeholder(tf.float32) |
|
logits_feed = numpy.random.randn(*batch_shape) |
|
labels = tf.placeholder(tf.float32) |
|
labels_feed = logits_feed > 0.1 |
|
logits.set_shape([None, 2]) |
|
labels.set_shape([None, 2]) |
|
|
|
if objective_kwargs is None: |
|
objective_kwargs = {} |
|
|
|
placeholder_kwargs = objective_kwargs.copy() |
|
placeholder_kwargs['labels'] = labels |
|
placeholder_kwargs['logits'] = logits |
|
placeholder_loss, _ = global_objective(**placeholder_kwargs) |
|
|
|
kwargs = objective_kwargs.copy() |
|
kwargs['labels'] = labels_feed |
|
kwargs['logits'] = logits_feed |
|
loss, _ = global_objective(**kwargs) |
|
|
|
with self.test_session() as session: |
|
tf.global_variables_initializer().run() |
|
feed_loss_val = session.run(placeholder_loss, |
|
feed_dict={logits: logits_feed, |
|
labels: labels_feed}) |
|
loss_val = session.run(loss) |
|
self.assertAllClose(feed_loss_val, loss_val) |
|
|
|
|
|
|
|
|
|
|
|
def _multilabel_data(): |
|
targets = tf.constant([1.0, 1.0, 1.0, 0.0, 0.0, 0.0], shape=[6, 1]) |
|
targets = tf.concat([targets, targets], 1) |
|
logits_positives = tf.constant([[0.0, 15], |
|
[16, 0.0], |
|
[14, 0.0]], shape=[3, 2]) |
|
logits_negatives = tf.constant([[-17, 0.0], |
|
[-15, 0.0], |
|
[0.0, -101]], shape=[3, 2]) |
|
logits = tf.concat([logits_positives, logits_negatives], 0) |
|
priors = tf.constant(0.5, shape=[2]) |
|
|
|
return targets, logits, priors |
|
|
|
|
|
def _other_multilabel_data(surrogate_type): |
|
targets = tf.constant( |
|
[1.0] * 6 + [0.0] * 6, shape=[12, 1]) |
|
targets = tf.concat([targets, targets], 1) |
|
logits_positives = tf.constant([[0.0, 13], |
|
[12, 0.0], |
|
[15, 0.0], |
|
[0.0, 30], |
|
[13, 0.0], |
|
[18, 0.0]], shape=[6, 2]) |
|
|
|
cost_2 = 1.0 if surrogate_type == 'hinge' else 1.09861229 |
|
logits_negatives = tf.constant([[-16, cost_2], |
|
[-15, cost_2], |
|
[cost_2, -111], |
|
[-133, -14,], |
|
[-14.0100101, -16,], |
|
[-19.888828882, -101]], shape=[6, 2]) |
|
logits = tf.concat([logits_positives, logits_negatives], 0) |
|
priors = tf.constant(0.5, shape=[2]) |
|
|
|
def builder(): |
|
return targets, logits, priors |
|
|
|
return builder |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|