|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Eval pre-trained 1 billion word language model. |
|
""" |
|
import os |
|
import sys |
|
|
|
import numpy as np |
|
from six.moves import xrange |
|
import tensorflow as tf |
|
|
|
from google.protobuf import text_format |
|
import data_utils |
|
|
|
FLAGS = tf.flags.FLAGS |
|
|
|
tf.flags.DEFINE_string('mode', 'eval', |
|
'One of [sample, eval, dump_emb, dump_lstm_emb]. ' |
|
'"sample" mode samples future word predictions, using ' |
|
'FLAGS.prefix as prefix (prefix could be left empty). ' |
|
'"eval" mode calculates perplexity of the ' |
|
'FLAGS.input_data. ' |
|
'"dump_emb" mode dumps word and softmax embeddings to ' |
|
'FLAGS.save_dir. embeddings are dumped in the same ' |
|
'order as words in vocabulary. All words in vocabulary ' |
|
'are dumped.' |
|
'dump_lstm_emb dumps lstm embeddings of FLAGS.sentence ' |
|
'to FLAGS.save_dir.') |
|
tf.flags.DEFINE_string('pbtxt', '', |
|
'GraphDef proto text file used to construct model ' |
|
'structure.') |
|
tf.flags.DEFINE_string('ckpt', '', |
|
'Checkpoint directory used to fill model values.') |
|
tf.flags.DEFINE_string('vocab_file', '', 'Vocabulary file.') |
|
tf.flags.DEFINE_string('save_dir', '', |
|
'Used for "dump_emb" mode to save word embeddings.') |
|
|
|
tf.flags.DEFINE_string('prefix', '', |
|
'Used for "sample" mode to predict next words.') |
|
tf.flags.DEFINE_integer('max_sample_words', 100, |
|
'Sampling stops either when </S> is met or this number ' |
|
'of steps has passed.') |
|
tf.flags.DEFINE_integer('num_samples', 3, |
|
'Number of samples to generate for the prefix.') |
|
|
|
tf.flags.DEFINE_string('sentence', '', |
|
'Used as input for "dump_lstm_emb" mode.') |
|
|
|
tf.flags.DEFINE_string('input_data', '', |
|
'Input data files for eval model.') |
|
tf.flags.DEFINE_integer('max_eval_steps', 1000000, |
|
'Maximum mumber of steps to run "eval" mode.') |
|
|
|
|
|
|
|
BATCH_SIZE = 1 |
|
NUM_TIMESTEPS = 1 |
|
MAX_WORD_LEN = 50 |
|
|
|
|
|
def _LoadModel(gd_file, ckpt_file): |
|
"""Load the model from GraphDef and Checkpoint. |
|
|
|
Args: |
|
gd_file: GraphDef proto text file. |
|
ckpt_file: TensorFlow Checkpoint file. |
|
|
|
Returns: |
|
TensorFlow session and tensors dict. |
|
""" |
|
with tf.Graph().as_default(): |
|
sys.stderr.write('Recovering graph.\n') |
|
with tf.gfile.FastGFile(gd_file, 'r') as f: |
|
s = f.read().decode() |
|
gd = tf.GraphDef() |
|
text_format.Merge(s, gd) |
|
|
|
tf.logging.info('Recovering Graph %s', gd_file) |
|
t = {} |
|
[t['states_init'], t['lstm/lstm_0/control_dependency'], |
|
t['lstm/lstm_1/control_dependency'], t['softmax_out'], t['class_ids_out'], |
|
t['class_weights_out'], t['log_perplexity_out'], t['inputs_in'], |
|
t['targets_in'], t['target_weights_in'], t['char_inputs_in'], |
|
t['all_embs'], t['softmax_weights'], t['global_step'] |
|
] = tf.import_graph_def(gd, {}, ['states_init', |
|
'lstm/lstm_0/control_dependency:0', |
|
'lstm/lstm_1/control_dependency:0', |
|
'softmax_out:0', |
|
'class_ids_out:0', |
|
'class_weights_out:0', |
|
'log_perplexity_out:0', |
|
'inputs_in:0', |
|
'targets_in:0', |
|
'target_weights_in:0', |
|
'char_inputs_in:0', |
|
'all_embs_out:0', |
|
'Reshape_3:0', |
|
'global_step:0'], name='') |
|
|
|
sys.stderr.write('Recovering checkpoint %s\n' % ckpt_file) |
|
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) |
|
sess.run('save/restore_all', {'save/Const:0': ckpt_file}) |
|
sess.run(t['states_init']) |
|
|
|
return sess, t |
|
|
|
|
|
def _EvalModel(dataset): |
|
"""Evaluate model perplexity using provided dataset. |
|
|
|
Args: |
|
dataset: LM1BDataset object. |
|
""" |
|
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt) |
|
|
|
current_step = t['global_step'].eval(session=sess) |
|
sys.stderr.write('Loaded step %d.\n' % current_step) |
|
|
|
data_gen = dataset.get_batch(BATCH_SIZE, NUM_TIMESTEPS, forever=False) |
|
sum_num = 0.0 |
|
sum_den = 0.0 |
|
perplexity = 0.0 |
|
for i, (inputs, char_inputs, _, targets, weights) in enumerate(data_gen): |
|
input_dict = {t['inputs_in']: inputs, |
|
t['targets_in']: targets, |
|
t['target_weights_in']: weights} |
|
if 'char_inputs_in' in t: |
|
input_dict[t['char_inputs_in']] = char_inputs |
|
log_perp = sess.run(t['log_perplexity_out'], feed_dict=input_dict) |
|
|
|
if np.isnan(log_perp): |
|
sys.stderr.error('log_perplexity is Nan.\n') |
|
else: |
|
sum_num += log_perp * weights.mean() |
|
sum_den += weights.mean() |
|
if sum_den > 0: |
|
perplexity = np.exp(sum_num / sum_den) |
|
|
|
sys.stderr.write('Eval Step: %d, Average Perplexity: %f.\n' % |
|
(i, perplexity)) |
|
|
|
if i > FLAGS.max_eval_steps: |
|
break |
|
|
|
|
|
def _SampleSoftmax(softmax): |
|
return min(np.sum(np.cumsum(softmax) < np.random.rand()), len(softmax) - 1) |
|
|
|
|
|
def _SampleModel(prefix_words, vocab): |
|
"""Predict next words using the given prefix words. |
|
|
|
Args: |
|
prefix_words: Prefix words. |
|
vocab: Vocabulary. Contains max word chard id length and converts between |
|
words and ids. |
|
""" |
|
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) |
|
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32) |
|
|
|
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt) |
|
|
|
if prefix_words.find('<S>') != 0: |
|
prefix_words = '<S> ' + prefix_words |
|
|
|
prefix = [vocab.word_to_id(w) for w in prefix_words.split()] |
|
prefix_char_ids = [vocab.word_to_char_ids(w) for w in prefix_words.split()] |
|
for _ in xrange(FLAGS.num_samples): |
|
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) |
|
char_ids_inputs = np.zeros( |
|
[BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32) |
|
samples = prefix[:] |
|
char_ids_samples = prefix_char_ids[:] |
|
sent = '' |
|
while True: |
|
inputs[0, 0] = samples[0] |
|
char_ids_inputs[0, 0, :] = char_ids_samples[0] |
|
samples = samples[1:] |
|
char_ids_samples = char_ids_samples[1:] |
|
|
|
softmax = sess.run(t['softmax_out'], |
|
feed_dict={t['char_inputs_in']: char_ids_inputs, |
|
t['inputs_in']: inputs, |
|
t['targets_in']: targets, |
|
t['target_weights_in']: weights}) |
|
|
|
sample = _SampleSoftmax(softmax[0]) |
|
sample_char_ids = vocab.word_to_char_ids(vocab.id_to_word(sample)) |
|
|
|
if not samples: |
|
samples = [sample] |
|
char_ids_samples = [sample_char_ids] |
|
sent += vocab.id_to_word(samples[0]) + ' ' |
|
sys.stderr.write('%s\n' % sent) |
|
|
|
if (vocab.id_to_word(samples[0]) == '</S>' or |
|
len(sent) > FLAGS.max_sample_words): |
|
break |
|
|
|
|
|
def _DumpEmb(vocab): |
|
"""Dump the softmax weights and word embeddings to files. |
|
|
|
Args: |
|
vocab: Vocabulary. Contains vocabulary size and converts word to ids. |
|
""" |
|
assert FLAGS.save_dir, 'Must specify FLAGS.save_dir for dump_emb.' |
|
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) |
|
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) |
|
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32) |
|
|
|
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt) |
|
|
|
softmax_weights = sess.run(t['softmax_weights']) |
|
fname = FLAGS.save_dir + '/embeddings_softmax.npy' |
|
with tf.gfile.Open(fname, mode='w') as f: |
|
np.save(f, softmax_weights) |
|
sys.stderr.write('Finished softmax weights\n') |
|
|
|
all_embs = np.zeros([vocab.size, 1024]) |
|
for i in xrange(vocab.size): |
|
input_dict = {t['inputs_in']: inputs, |
|
t['targets_in']: targets, |
|
t['target_weights_in']: weights} |
|
if 'char_inputs_in' in t: |
|
input_dict[t['char_inputs_in']] = ( |
|
vocab.word_char_ids[i].reshape([-1, 1, MAX_WORD_LEN])) |
|
embs = sess.run(t['all_embs'], input_dict) |
|
all_embs[i, :] = embs |
|
sys.stderr.write('Finished word embedding %d/%d\n' % (i, vocab.size)) |
|
|
|
fname = FLAGS.save_dir + '/embeddings_char_cnn.npy' |
|
with tf.gfile.Open(fname, mode='w') as f: |
|
np.save(f, all_embs) |
|
sys.stderr.write('Embedding file saved\n') |
|
|
|
|
|
def _DumpSentenceEmbedding(sentence, vocab): |
|
"""Predict next words using the given prefix words. |
|
|
|
Args: |
|
sentence: Sentence words. |
|
vocab: Vocabulary. Contains max word chard id length and converts between |
|
words and ids. |
|
""" |
|
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) |
|
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32) |
|
|
|
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt) |
|
|
|
if sentence.find('<S>') != 0: |
|
sentence = '<S> ' + sentence |
|
|
|
word_ids = [vocab.word_to_id(w) for w in sentence.split()] |
|
char_ids = [vocab.word_to_char_ids(w) for w in sentence.split()] |
|
|
|
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) |
|
char_ids_inputs = np.zeros( |
|
[BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32) |
|
for i in xrange(len(word_ids)): |
|
inputs[0, 0] = word_ids[i] |
|
char_ids_inputs[0, 0, :] = char_ids[i] |
|
|
|
|
|
|
|
lstm_emb = sess.run(t['lstm/lstm_1/control_dependency'], |
|
feed_dict={t['char_inputs_in']: char_ids_inputs, |
|
t['inputs_in']: inputs, |
|
t['targets_in']: targets, |
|
t['target_weights_in']: weights}) |
|
|
|
fname = os.path.join(FLAGS.save_dir, 'lstm_emb_step_%d.npy' % i) |
|
with tf.gfile.Open(fname, mode='w') as f: |
|
np.save(f, lstm_emb) |
|
sys.stderr.write('LSTM embedding step %d file saved\n' % i) |
|
|
|
|
|
def main(unused_argv): |
|
vocab = data_utils.CharsVocabulary(FLAGS.vocab_file, MAX_WORD_LEN) |
|
|
|
if FLAGS.mode == 'eval': |
|
dataset = data_utils.LM1BDataset(FLAGS.input_data, vocab) |
|
_EvalModel(dataset) |
|
elif FLAGS.mode == 'sample': |
|
_SampleModel(FLAGS.prefix, vocab) |
|
elif FLAGS.mode == 'dump_emb': |
|
_DumpEmb(vocab) |
|
elif FLAGS.mode == 'dump_lstm_emb': |
|
_DumpSentenceEmbedding(FLAGS.sentence, vocab) |
|
else: |
|
raise Exception('Mode not supported.') |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.app.run() |
|
|