|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Detection model evaluator. |
|
|
|
This file provides a generic evaluation method that can be used to evaluate a |
|
DetectionModel. |
|
|
|
""" |
|
|
|
import tensorflow.compat.v1 as tf |
|
from tensorflow.contrib import tfprof as contrib_tfprof |
|
from lstm_object_detection.metrics import coco_evaluation_all_frames |
|
from object_detection import eval_util |
|
from object_detection.core import prefetcher |
|
from object_detection.core import standard_fields as fields |
|
from object_detection.metrics import coco_evaluation |
|
from object_detection.utils import object_detection_evaluation |
|
|
|
|
|
|
|
|
|
|
|
EVAL_METRICS_CLASS_DICT = { |
|
'pascal_voc_detection_metrics': |
|
object_detection_evaluation.PascalDetectionEvaluator, |
|
'weighted_pascal_voc_detection_metrics': |
|
object_detection_evaluation.WeightedPascalDetectionEvaluator, |
|
'pascal_voc_instance_segmentation_metrics': |
|
object_detection_evaluation.PascalInstanceSegmentationEvaluator, |
|
'weighted_pascal_voc_instance_segmentation_metrics': |
|
object_detection_evaluation.WeightedPascalInstanceSegmentationEvaluator, |
|
'open_images_detection_metrics': |
|
object_detection_evaluation.OpenImagesDetectionEvaluator, |
|
'coco_detection_metrics': |
|
coco_evaluation.CocoDetectionEvaluator, |
|
'coco_mask_metrics': |
|
coco_evaluation.CocoMaskEvaluator, |
|
'coco_evaluation_all_frames': |
|
coco_evaluation_all_frames.CocoEvaluationAllFrames, |
|
} |
|
|
|
EVAL_DEFAULT_METRIC = 'pascal_voc_detection_metrics' |
|
|
|
|
|
def _create_detection_op(model, input_dict, batch): |
|
"""Create detection ops. |
|
|
|
Args: |
|
model: model to perform predictions with. |
|
input_dict: A dict holds input data. |
|
batch: batch size for evaluation. |
|
|
|
Returns: |
|
Detection tensor ops. |
|
""" |
|
video_tensor = tf.stack(list(input_dict[fields.InputDataFields.image])) |
|
preprocessed_video, true_image_shapes = model.preprocess( |
|
tf.to_float(video_tensor)) |
|
if batch is not None: |
|
prediction_dict = model.predict(preprocessed_video, true_image_shapes, |
|
batch) |
|
else: |
|
prediction_dict = model.predict(preprocessed_video, true_image_shapes) |
|
|
|
return model.postprocess(prediction_dict, true_image_shapes) |
|
|
|
|
|
def _extract_prediction_tensors(model, |
|
create_input_dict_fn, |
|
ignore_groundtruth=False): |
|
"""Restores the model in a tensorflow session. |
|
|
|
Args: |
|
model: model to perform predictions with. |
|
create_input_dict_fn: function to create input tensor dictionaries. |
|
ignore_groundtruth: whether groundtruth should be ignored. |
|
|
|
|
|
Returns: |
|
tensor_dict: A tensor dictionary with evaluations. |
|
""" |
|
input_dict = create_input_dict_fn() |
|
batch = None |
|
if 'batch' in input_dict: |
|
batch = input_dict.pop('batch') |
|
else: |
|
prefetch_queue = prefetcher.prefetch(input_dict, capacity=500) |
|
input_dict = prefetch_queue.dequeue() |
|
|
|
for key, value in input_dict.iteritems(): |
|
input_dict[key] = (value,) |
|
|
|
detections = _create_detection_op(model, input_dict, batch) |
|
|
|
|
|
contrib_tfprof.model_analyzer.print_model_analysis( |
|
tf.get_default_graph(), |
|
tfprof_options=contrib_tfprof.model_analyzer |
|
.TRAINABLE_VARS_PARAMS_STAT_OPTIONS) |
|
contrib_tfprof.model_analyzer.print_model_analysis( |
|
tf.get_default_graph(), |
|
tfprof_options=contrib_tfprof.model_analyzer.FLOAT_OPS_OPTIONS) |
|
|
|
num_frames = len(input_dict[fields.InputDataFields.image]) |
|
ret = [] |
|
for i in range(num_frames): |
|
original_image = tf.expand_dims(input_dict[fields.InputDataFields.image][i], |
|
0) |
|
groundtruth = None |
|
if not ignore_groundtruth: |
|
groundtruth = { |
|
fields.InputDataFields.groundtruth_boxes: |
|
input_dict[fields.InputDataFields.groundtruth_boxes][i], |
|
fields.InputDataFields.groundtruth_classes: |
|
input_dict[fields.InputDataFields.groundtruth_classes][i], |
|
} |
|
optional_keys = ( |
|
fields.InputDataFields.groundtruth_area, |
|
fields.InputDataFields.groundtruth_is_crowd, |
|
fields.InputDataFields.groundtruth_difficult, |
|
fields.InputDataFields.groundtruth_group_of, |
|
) |
|
for opt_key in optional_keys: |
|
if opt_key in input_dict: |
|
groundtruth[opt_key] = input_dict[opt_key][i] |
|
if fields.DetectionResultFields.detection_masks in detections: |
|
groundtruth[fields.InputDataFields.groundtruth_instance_masks] = ( |
|
input_dict[fields.InputDataFields.groundtruth_instance_masks][i]) |
|
|
|
detections_frame = { |
|
key: tf.expand_dims(value[i], 0) |
|
for key, value in detections.iteritems() |
|
} |
|
|
|
source_id = ( |
|
batch.key[0] if batch is not None else |
|
input_dict[fields.InputDataFields.source_id][i]) |
|
ret.append( |
|
eval_util.result_dict_for_single_example( |
|
original_image, |
|
source_id, |
|
detections_frame, |
|
groundtruth, |
|
class_agnostic=(fields.DetectionResultFields.detection_classes |
|
not in detections), |
|
scale_to_absolute=True)) |
|
return ret |
|
|
|
|
|
def get_evaluators(eval_config, categories): |
|
"""Returns the evaluator class according to eval_config, valid for categories. |
|
|
|
Args: |
|
eval_config: evaluation configurations. |
|
categories: a list of categories to evaluate. |
|
Returns: |
|
An list of instances of DetectionEvaluator. |
|
|
|
Raises: |
|
ValueError: if metric is not in the metric class dictionary. |
|
""" |
|
eval_metric_fn_keys = eval_config.metrics_set |
|
if not eval_metric_fn_keys: |
|
eval_metric_fn_keys = [EVAL_DEFAULT_METRIC] |
|
evaluators_list = [] |
|
for eval_metric_fn_key in eval_metric_fn_keys: |
|
if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT: |
|
raise ValueError('Metric not found: {}'.format(eval_metric_fn_key)) |
|
else: |
|
evaluators_list.append( |
|
EVAL_METRICS_CLASS_DICT[eval_metric_fn_key](categories=categories)) |
|
return evaluators_list |
|
|
|
|
|
def evaluate(create_input_dict_fn, |
|
create_model_fn, |
|
eval_config, |
|
categories, |
|
checkpoint_dir, |
|
eval_dir, |
|
graph_hook_fn=None): |
|
"""Evaluation function for detection models. |
|
|
|
Args: |
|
create_input_dict_fn: a function to create a tensor input dictionary. |
|
create_model_fn: a function that creates a DetectionModel. |
|
eval_config: a eval_pb2.EvalConfig protobuf. |
|
categories: a list of category dictionaries. Each dict in the list should |
|
have an integer 'id' field and string 'name' field. |
|
checkpoint_dir: directory to load the checkpoints to evaluate from. |
|
eval_dir: directory to write evaluation metrics summary to. |
|
graph_hook_fn: Optional function that is called after the training graph is |
|
completely built. This is helpful to perform additional changes to the |
|
training graph such as optimizing batchnorm. The function should modify |
|
the default graph. |
|
|
|
Returns: |
|
metrics: A dictionary containing metric names and values from the latest |
|
run. |
|
""" |
|
|
|
model = create_model_fn() |
|
|
|
if eval_config.ignore_groundtruth and not eval_config.export_path: |
|
tf.logging.fatal('If ignore_groundtruth=True then an export_path is ' |
|
'required. Aborting!!!') |
|
|
|
tensor_dicts = _extract_prediction_tensors( |
|
model=model, |
|
create_input_dict_fn=create_input_dict_fn, |
|
ignore_groundtruth=eval_config.ignore_groundtruth) |
|
|
|
def _process_batch(tensor_dicts, |
|
sess, |
|
batch_index, |
|
counters, |
|
losses_dict=None): |
|
"""Evaluates tensors in tensor_dicts, visualizing the first K examples. |
|
|
|
This function calls sess.run on tensor_dicts, evaluating the original_image |
|
tensor only on the first K examples and visualizing detections overlaid |
|
on this original_image. |
|
|
|
Args: |
|
tensor_dicts: a dictionary of tensors |
|
sess: tensorflow session |
|
batch_index: the index of the batch amongst all batches in the run. |
|
counters: a dictionary holding 'success' and 'skipped' fields which can |
|
be updated to keep track of number of successful and failed runs, |
|
respectively. If these fields are not updated, then the success/skipped |
|
counter values shown at the end of evaluation will be incorrect. |
|
losses_dict: Optional dictonary of scalar loss tensors. Necessary only |
|
for matching function signiture in third_party eval_util.py. |
|
|
|
Returns: |
|
result_dict: a dictionary of numpy arrays |
|
result_losses_dict: a dictionary of scalar losses. This is empty if input |
|
losses_dict is None. Necessary only for matching function signiture in |
|
third_party eval_util.py. |
|
""" |
|
if batch_index % 10 == 0: |
|
tf.logging.info('Running eval ops batch %d', batch_index) |
|
if not losses_dict: |
|
losses_dict = {} |
|
try: |
|
result_dicts, result_losses_dict = sess.run([tensor_dicts, losses_dict]) |
|
counters['success'] += 1 |
|
except tf.errors.InvalidArgumentError: |
|
tf.logging.info('Skipping image') |
|
counters['skipped'] += 1 |
|
return {} |
|
num_images = len(tensor_dicts) |
|
for i in range(num_images): |
|
result_dict = result_dicts[i] |
|
global_step = tf.train.global_step(sess, tf.train.get_global_step()) |
|
tag = 'image-%d' % (batch_index * num_images + i) |
|
if batch_index < eval_config.num_visualizations / num_images: |
|
eval_util.visualize_detection_results( |
|
result_dict, |
|
tag, |
|
global_step, |
|
categories=categories, |
|
summary_dir=eval_dir, |
|
export_dir=eval_config.visualization_export_dir, |
|
show_groundtruth=eval_config.visualize_groundtruth_boxes, |
|
groundtruth_box_visualization_color=eval_config. |
|
groundtruth_box_visualization_color, |
|
min_score_thresh=eval_config.min_score_threshold, |
|
max_num_predictions=eval_config.max_num_boxes_to_visualize, |
|
skip_scores=eval_config.skip_scores, |
|
skip_labels=eval_config.skip_labels, |
|
keep_image_id_for_visualization_export=eval_config. |
|
keep_image_id_for_visualization_export) |
|
if num_images > 1: |
|
return result_dicts, result_losses_dict |
|
else: |
|
return result_dicts[0], result_losses_dict |
|
|
|
variables_to_restore = tf.global_variables() |
|
global_step = tf.train.get_or_create_global_step() |
|
variables_to_restore.append(global_step) |
|
|
|
if graph_hook_fn: |
|
graph_hook_fn() |
|
|
|
if eval_config.use_moving_averages: |
|
variable_averages = tf.train.ExponentialMovingAverage(0.0) |
|
variables_to_restore = variable_averages.variables_to_restore() |
|
for key in variables_to_restore.keys(): |
|
if 'moving_mean' in key: |
|
variables_to_restore[key.replace( |
|
'moving_mean', 'moving_mean/ExponentialMovingAverage')] = ( |
|
variables_to_restore[key]) |
|
del variables_to_restore[key] |
|
if 'moving_variance' in key: |
|
variables_to_restore[key.replace( |
|
'moving_variance', 'moving_variance/ExponentialMovingAverage')] = ( |
|
variables_to_restore[key]) |
|
del variables_to_restore[key] |
|
|
|
saver = tf.train.Saver(variables_to_restore) |
|
|
|
def _restore_latest_checkpoint(sess): |
|
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir) |
|
saver.restore(sess, latest_checkpoint) |
|
|
|
metrics = eval_util.repeated_checkpoint_run( |
|
tensor_dict=tensor_dicts, |
|
summary_dir=eval_dir, |
|
evaluators=get_evaluators(eval_config, categories), |
|
batch_processor=_process_batch, |
|
checkpoint_dirs=[checkpoint_dir], |
|
variables_to_restore=None, |
|
restore_fn=_restore_latest_checkpoint, |
|
num_batches=eval_config.num_examples, |
|
eval_interval_secs=eval_config.eval_interval_secs, |
|
max_number_of_evaluations=(1 if eval_config.ignore_groundtruth else |
|
eval_config.max_evals |
|
if eval_config.max_evals else None), |
|
master=eval_config.eval_master, |
|
save_graph=eval_config.save_graph, |
|
save_graph_dir=(eval_dir if eval_config.save_graph else '')) |
|
|
|
return metrics |
|
|