|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Shuffle samples for human evaluation. |
|
|
|
Local launch command: |
|
python sample_shuffler.py |
|
--input_ml_path=/tmp/ptb/seq2seq_vd_shareemb_forreal_55_3 |
|
--input_gan_path=/tmp/ptb/MaskGAN_PTB_ari_avg_56.29_v2.0.0 |
|
--output_file_name=/tmp/ptb/shuffled_output.txt |
|
|
|
python sample_shuffler.py |
|
--input_ml_path=/tmp/generate_samples/MaskGAN_IMDB_Benchmark_87.1_v0.3.0 |
|
--input_gan_path=/tmp/generate_samples/MaskGAN_IMDB_v1.0.1 |
|
--output_file_name=/tmp/imdb/shuffled_output.txt |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import os |
|
|
|
import numpy as np |
|
|
|
import tensorflow as tf |
|
|
|
tf.app.flags.DEFINE_string('input_ml_path', '/tmp', 'Model output directory.') |
|
tf.app.flags.DEFINE_string('input_gan_path', '/tmp', 'Model output directory.') |
|
tf.app.flags.DEFINE_string('output_file_name', '/tmp/ptb/shuffled_output.txt', |
|
'Model output file.') |
|
tf.app.flags.DEFINE_boolean( |
|
'output_masked_logs', False, |
|
'Whether to display for human evaluation (show masking).') |
|
tf.app.flags.DEFINE_integer('number_epochs', 1, |
|
'The number of epochs to produce.') |
|
|
|
FLAGS = tf.app.flags.FLAGS |
|
|
|
|
|
def shuffle_samples(input_file_1, input_file_2): |
|
"""Shuffle the examples.""" |
|
shuffled = [] |
|
|
|
|
|
np.random.seed(0) |
|
|
|
for line_1, line_2 in zip(input_file_1, input_file_2): |
|
rand = np.random.randint(1, 3) |
|
if rand == 1: |
|
shuffled.append((rand, line_1, line_2)) |
|
else: |
|
shuffled.append((rand, line_2, line_1)) |
|
input_file_1.close() |
|
input_file_2.close() |
|
return shuffled |
|
|
|
|
|
def generate_output(shuffled_tuples, output_file_name): |
|
output_file = tf.gfile.GFile(output_file_name, mode='w') |
|
|
|
for tup in shuffled_tuples: |
|
formatted_tuple = ('\n{:<1}, {:<1}, {:<1}').format(tup[0], tup[1].rstrip(), |
|
tup[2].rstrip()) |
|
output_file.write(formatted_tuple) |
|
output_file.close() |
|
|
|
|
|
def main(_): |
|
ml_samples_file = tf.gfile.GFile( |
|
os.path.join(FLAGS.input_ml_path, 'reviews.txt'), mode='r') |
|
gan_samples_file = tf.gfile.GFile( |
|
os.path.join(FLAGS.input_gan_path, 'reviews.txt'), mode='r') |
|
|
|
|
|
shuffled_tuples = shuffle_samples(ml_samples_file, gan_samples_file) |
|
|
|
|
|
generate_output(shuffled_tuples, FLAGS.output_file_name) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.app.run() |
|
|