|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Author: aneelakantan (Arvind Neelakantan) |
|
""" |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
|
|
class Parameters: |
|
|
|
def __init__(self, u): |
|
self.utility = u |
|
self.init_seed_counter = 0 |
|
self.word_init = {} |
|
|
|
def parameters(self, utility): |
|
params = {} |
|
inits = [] |
|
embedding_dims = self.utility.FLAGS.embedding_dims |
|
params["unit"] = tf.Variable( |
|
self.RandomUniformInit([len(utility.operations_set), embedding_dims])) |
|
params["word"] = tf.Variable( |
|
self.RandomUniformInit([utility.FLAGS.vocab_size, embedding_dims])) |
|
params["word_match_feature_column_name"] = tf.Variable( |
|
self.RandomUniformInit([1])) |
|
params["controller"] = tf.Variable( |
|
self.RandomUniformInit([2 * embedding_dims, embedding_dims])) |
|
params["column_controller"] = tf.Variable( |
|
self.RandomUniformInit([2 * embedding_dims, embedding_dims])) |
|
params["column_controller_prev"] = tf.Variable( |
|
self.RandomUniformInit([embedding_dims, embedding_dims])) |
|
params["controller_prev"] = tf.Variable( |
|
self.RandomUniformInit([embedding_dims, embedding_dims])) |
|
global_step = tf.Variable(1, name="global_step") |
|
|
|
key_list = ["question_lstm"] |
|
for key in key_list: |
|
|
|
for wgts in ["ix", "fx", "cx", "ox"]: |
|
params[key + "_" + wgts] = tf.Variable( |
|
self.RandomUniformInit([embedding_dims, embedding_dims])) |
|
|
|
for wgts in ["im", "fm", "cm", "om"]: |
|
params[key + "_" + wgts] = tf.Variable( |
|
self.RandomUniformInit([embedding_dims, embedding_dims])) |
|
|
|
for bias in ["i", "f", "c", "o"]: |
|
if (bias == "f"): |
|
print("forget gate bias") |
|
params[key + "_" + bias] = tf.Variable( |
|
tf.random_uniform([embedding_dims], 1.0, 1.1, self.utility. |
|
tf_data_type[self.utility.FLAGS.data_type])) |
|
else: |
|
params[key + "_" + bias] = tf.Variable( |
|
self.RandomUniformInit([embedding_dims])) |
|
params["history_recurrent"] = tf.Variable( |
|
self.RandomUniformInit([3 * embedding_dims, embedding_dims])) |
|
params["history_recurrent_bias"] = tf.Variable( |
|
self.RandomUniformInit([1, embedding_dims])) |
|
params["break_conditional"] = tf.Variable( |
|
self.RandomUniformInit([2 * embedding_dims, embedding_dims])) |
|
init = tf.global_variables_initializer() |
|
return params, global_step, init |
|
|
|
def RandomUniformInit(self, shape): |
|
"""Returns a RandomUniform Tensor between -param_init and param_init.""" |
|
param_seed = self.utility.FLAGS.param_seed |
|
self.init_seed_counter += 1 |
|
return tf.random_uniform( |
|
shape, -1.0 * |
|
(np.float32(self.utility.FLAGS.param_init) |
|
).astype(self.utility.np_data_type[self.utility.FLAGS.data_type]), |
|
(np.float32(self.utility.FLAGS.param_init) |
|
).astype(self.utility.np_data_type[self.utility.FLAGS.data_type]), |
|
self.utility.tf_data_type[self.utility.FLAGS.data_type], |
|
param_seed + self.init_seed_counter) |
|
|