|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for object_detection.tflearn.inputs.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import functools |
|
import os |
|
import unittest |
|
from absl import logging |
|
from absl.testing import parameterized |
|
import numpy as np |
|
import six |
|
import tensorflow.compat.v1 as tf |
|
|
|
from object_detection import inputs |
|
from object_detection.core import preprocessor |
|
from object_detection.core import standard_fields as fields |
|
from object_detection.utils import config_util |
|
from object_detection.utils import test_case |
|
from object_detection.utils import test_utils |
|
from object_detection.utils import tf_version |
|
|
|
if six.PY2: |
|
import mock |
|
else: |
|
from unittest import mock |
|
|
|
FLAGS = tf.flags.FLAGS |
|
|
|
|
|
def _get_configs_for_model(model_name): |
|
"""Returns configurations for model.""" |
|
fname = os.path.join(tf.resource_loader.get_data_files_path(), |
|
'samples/configs/' + model_name + '.config') |
|
label_map_path = os.path.join(tf.resource_loader.get_data_files_path(), |
|
'data/pet_label_map.pbtxt') |
|
data_path = os.path.join(tf.resource_loader.get_data_files_path(), |
|
'test_data/pets_examples.record') |
|
configs = config_util.get_configs_from_pipeline_file(fname) |
|
override_dict = { |
|
'train_input_path': data_path, |
|
'eval_input_path': data_path, |
|
'label_map_path': label_map_path |
|
} |
|
return config_util.merge_external_params_with_configs( |
|
configs, kwargs_dict=override_dict) |
|
|
|
|
|
def _get_configs_for_model_sequence_example(model_name): |
|
"""Returns configurations for model.""" |
|
fname = os.path.join(tf.resource_loader.get_data_files_path(), |
|
'test_data/' + model_name + '.config') |
|
label_map_path = os.path.join(tf.resource_loader.get_data_files_path(), |
|
'data/snapshot_serengeti_label_map.pbtxt') |
|
data_path = os.path.join( |
|
tf.resource_loader.get_data_files_path(), |
|
'test_data/snapshot_serengeti_sequence_examples.record') |
|
configs = config_util.get_configs_from_pipeline_file(fname) |
|
override_dict = { |
|
'train_input_path': data_path, |
|
'eval_input_path': data_path, |
|
'label_map_path': label_map_path |
|
} |
|
return config_util.merge_external_params_with_configs( |
|
configs, kwargs_dict=override_dict) |
|
|
|
|
|
def _make_initializable_iterator(dataset): |
|
"""Creates an iterator, and initializes tables. |
|
|
|
Args: |
|
dataset: A `tf.data.Dataset` object. |
|
|
|
Returns: |
|
A `tf.data.Iterator`. |
|
""" |
|
iterator = tf.data.make_initializable_iterator(dataset) |
|
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer) |
|
return iterator |
|
|
|
|
|
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only tests under TF2.X.') |
|
class InputFnTest(test_case.TestCase, parameterized.TestCase): |
|
|
|
def test_faster_rcnn_resnet50_train_input(self): |
|
"""Tests the training input function for FasterRcnnResnet50.""" |
|
configs = _get_configs_for_model('faster_rcnn_resnet50_pets') |
|
model_config = configs['model'] |
|
model_config.faster_rcnn.num_classes = 37 |
|
train_input_fn = inputs.create_train_input_fn( |
|
configs['train_config'], configs['train_input_config'], model_config) |
|
features, labels = _make_initializable_iterator(train_input_fn()).get_next() |
|
|
|
self.assertAllEqual([1, None, None, 3], |
|
features[fields.InputDataFields.image].shape.as_list()) |
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) |
|
self.assertAllEqual([1], |
|
features[inputs.HASH_KEY].shape.as_list()) |
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) |
|
self.assertAllEqual( |
|
[1, 100, 4], |
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_boxes].dtype) |
|
self.assertAllEqual( |
|
[1, 100, model_config.faster_rcnn.num_classes], |
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_classes].dtype) |
|
self.assertAllEqual( |
|
[1, 100], |
|
labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_weights].dtype) |
|
self.assertAllEqual( |
|
[1, 100, model_config.faster_rcnn.num_classes], |
|
labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) |
|
self.assertEqual( |
|
tf.float32, |
|
labels[fields.InputDataFields.groundtruth_confidences].dtype) |
|
|
|
def test_faster_rcnn_resnet50_train_input_with_additional_channels(self): |
|
"""Tests the training input function for FasterRcnnResnet50.""" |
|
configs = _get_configs_for_model('faster_rcnn_resnet50_pets') |
|
model_config = configs['model'] |
|
configs['train_input_config'].num_additional_channels = 2 |
|
configs['train_config'].retain_original_images = True |
|
model_config.faster_rcnn.num_classes = 37 |
|
train_input_fn = inputs.create_train_input_fn( |
|
configs['train_config'], configs['train_input_config'], model_config) |
|
features, labels = _make_initializable_iterator(train_input_fn()).get_next() |
|
|
|
self.assertAllEqual([1, None, None, 5], |
|
features[fields.InputDataFields.image].shape.as_list()) |
|
self.assertAllEqual( |
|
[1, None, None, 3], |
|
features[fields.InputDataFields.original_image].shape.as_list()) |
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) |
|
self.assertAllEqual([1], |
|
features[inputs.HASH_KEY].shape.as_list()) |
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) |
|
self.assertAllEqual( |
|
[1, 100, 4], |
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_boxes].dtype) |
|
self.assertAllEqual( |
|
[1, 100, model_config.faster_rcnn.num_classes], |
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_classes].dtype) |
|
self.assertAllEqual( |
|
[1, 100], |
|
labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_weights].dtype) |
|
self.assertAllEqual( |
|
[1, 100, model_config.faster_rcnn.num_classes], |
|
labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) |
|
self.assertEqual( |
|
tf.float32, |
|
labels[fields.InputDataFields.groundtruth_confidences].dtype) |
|
|
|
@parameterized.parameters( |
|
{'eval_batch_size': 1}, |
|
{'eval_batch_size': 8} |
|
) |
|
def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1): |
|
"""Tests the eval input function for FasterRcnnResnet50.""" |
|
configs = _get_configs_for_model('faster_rcnn_resnet50_pets') |
|
model_config = configs['model'] |
|
model_config.faster_rcnn.num_classes = 37 |
|
eval_config = configs['eval_config'] |
|
eval_config.batch_size = eval_batch_size |
|
eval_input_fn = inputs.create_eval_input_fn( |
|
eval_config, configs['eval_input_configs'][0], model_config) |
|
features, labels = _make_initializable_iterator(eval_input_fn()).get_next() |
|
self.assertAllEqual([eval_batch_size, None, None, 3], |
|
features[fields.InputDataFields.image].shape.as_list()) |
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, None, None, 3], |
|
features[fields.InputDataFields.original_image].shape.as_list()) |
|
self.assertEqual(tf.uint8, |
|
features[fields.InputDataFields.original_image].dtype) |
|
self.assertAllEqual([eval_batch_size], |
|
features[inputs.HASH_KEY].shape.as_list()) |
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100, 4], |
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_boxes].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100, model_config.faster_rcnn.num_classes], |
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_classes].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) |
|
self.assertEqual( |
|
tf.float32, |
|
labels[fields.InputDataFields.groundtruth_weights].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_area].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_area].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) |
|
self.assertEqual( |
|
tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) |
|
self.assertEqual( |
|
tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) |
|
|
|
def test_context_rcnn_resnet50_train_input_with_sequence_example( |
|
self, train_batch_size=8): |
|
"""Tests the training input function for FasterRcnnResnet50.""" |
|
configs = _get_configs_for_model_sequence_example( |
|
'context_rcnn_camera_trap') |
|
model_config = configs['model'] |
|
train_config = configs['train_config'] |
|
train_config.batch_size = train_batch_size |
|
train_input_fn = inputs.create_train_input_fn( |
|
train_config, configs['train_input_config'], model_config) |
|
features, labels = _make_initializable_iterator(train_input_fn()).get_next() |
|
|
|
self.assertAllEqual([train_batch_size, 640, 640, 3], |
|
features[fields.InputDataFields.image].shape.as_list()) |
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) |
|
self.assertAllEqual([train_batch_size], |
|
features[inputs.HASH_KEY].shape.as_list()) |
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) |
|
self.assertAllEqual( |
|
[train_batch_size, 100, 4], |
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_boxes].dtype) |
|
self.assertAllEqual( |
|
[train_batch_size, 100, model_config.faster_rcnn.num_classes], |
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_classes].dtype) |
|
self.assertAllEqual( |
|
[train_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_weights].dtype) |
|
self.assertAllEqual( |
|
[train_batch_size, 100, model_config.faster_rcnn.num_classes], |
|
labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) |
|
self.assertEqual( |
|
tf.float32, |
|
labels[fields.InputDataFields.groundtruth_confidences].dtype) |
|
|
|
def test_context_rcnn_resnet50_eval_input_with_sequence_example( |
|
self, eval_batch_size=8): |
|
"""Tests the eval input function for FasterRcnnResnet50.""" |
|
configs = _get_configs_for_model_sequence_example( |
|
'context_rcnn_camera_trap') |
|
model_config = configs['model'] |
|
eval_config = configs['eval_config'] |
|
eval_config.batch_size = eval_batch_size |
|
eval_input_fn = inputs.create_eval_input_fn( |
|
eval_config, configs['eval_input_configs'][0], model_config) |
|
features, labels = _make_initializable_iterator(eval_input_fn()).get_next() |
|
self.assertAllEqual([eval_batch_size, 640, 640, 3], |
|
features[fields.InputDataFields.image].shape.as_list()) |
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 640, 640, 3], |
|
features[fields.InputDataFields.original_image].shape.as_list()) |
|
self.assertEqual(tf.uint8, |
|
features[fields.InputDataFields.original_image].dtype) |
|
self.assertAllEqual([eval_batch_size], |
|
features[inputs.HASH_KEY].shape.as_list()) |
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100, 4], |
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_boxes].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100, model_config.faster_rcnn.num_classes], |
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_classes].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) |
|
self.assertEqual( |
|
tf.float32, |
|
labels[fields.InputDataFields.groundtruth_weights].dtype) |
|
|
|
def test_ssd_inceptionV2_train_input(self): |
|
"""Tests the training input function for SSDInceptionV2.""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
model_config = configs['model'] |
|
model_config.ssd.num_classes = 37 |
|
batch_size = configs['train_config'].batch_size |
|
train_input_fn = inputs.create_train_input_fn( |
|
configs['train_config'], configs['train_input_config'], model_config) |
|
features, labels = _make_initializable_iterator(train_input_fn()).get_next() |
|
|
|
self.assertAllEqual([batch_size, 300, 300, 3], |
|
features[fields.InputDataFields.image].shape.as_list()) |
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) |
|
self.assertAllEqual([batch_size], |
|
features[inputs.HASH_KEY].shape.as_list()) |
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) |
|
self.assertAllEqual( |
|
[batch_size], |
|
labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list()) |
|
self.assertEqual(tf.int32, |
|
labels[fields.InputDataFields.num_groundtruth_boxes].dtype) |
|
self.assertAllEqual( |
|
[batch_size, 100, 4], |
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_boxes].dtype) |
|
self.assertAllEqual( |
|
[batch_size, 100, model_config.ssd.num_classes], |
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_classes].dtype) |
|
self.assertAllEqual( |
|
[batch_size, 100], |
|
labels[ |
|
fields.InputDataFields.groundtruth_weights].shape.as_list()) |
|
self.assertEqual( |
|
tf.float32, |
|
labels[fields.InputDataFields.groundtruth_weights].dtype) |
|
|
|
@parameterized.parameters( |
|
{'eval_batch_size': 1}, |
|
{'eval_batch_size': 8} |
|
) |
|
def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1): |
|
"""Tests the eval input function for SSDInceptionV2.""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
model_config = configs['model'] |
|
model_config.ssd.num_classes = 37 |
|
eval_config = configs['eval_config'] |
|
eval_config.batch_size = eval_batch_size |
|
eval_input_fn = inputs.create_eval_input_fn( |
|
eval_config, configs['eval_input_configs'][0], model_config) |
|
features, labels = _make_initializable_iterator(eval_input_fn()).get_next() |
|
self.assertAllEqual([eval_batch_size, 300, 300, 3], |
|
features[fields.InputDataFields.image].shape.as_list()) |
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 300, 300, 3], |
|
features[fields.InputDataFields.original_image].shape.as_list()) |
|
self.assertEqual(tf.uint8, |
|
features[fields.InputDataFields.original_image].dtype) |
|
self.assertAllEqual([eval_batch_size], |
|
features[inputs.HASH_KEY].shape.as_list()) |
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100, 4], |
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_boxes].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100, model_config.ssd.num_classes], |
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_classes].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[ |
|
fields.InputDataFields.groundtruth_weights].shape.as_list()) |
|
self.assertEqual( |
|
tf.float32, |
|
labels[fields.InputDataFields.groundtruth_weights].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_area].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_area].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) |
|
self.assertEqual( |
|
tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) |
|
self.assertEqual( |
|
tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) |
|
|
|
def test_ssd_inceptionV2_eval_input_with_additional_channels( |
|
self, eval_batch_size=1): |
|
"""Tests the eval input function for SSDInceptionV2 with additional channel. |
|
|
|
Args: |
|
eval_batch_size: Batch size for eval set. |
|
""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
model_config = configs['model'] |
|
model_config.ssd.num_classes = 37 |
|
configs['eval_input_configs'][0].num_additional_channels = 1 |
|
eval_config = configs['eval_config'] |
|
eval_config.batch_size = eval_batch_size |
|
eval_config.retain_original_image_additional_channels = True |
|
eval_input_fn = inputs.create_eval_input_fn( |
|
eval_config, configs['eval_input_configs'][0], model_config) |
|
features, labels = _make_initializable_iterator(eval_input_fn()).get_next() |
|
self.assertAllEqual([eval_batch_size, 300, 300, 4], |
|
features[fields.InputDataFields.image].shape.as_list()) |
|
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 300, 300, 3], |
|
features[fields.InputDataFields.original_image].shape.as_list()) |
|
self.assertEqual(tf.uint8, |
|
features[fields.InputDataFields.original_image].dtype) |
|
self.assertAllEqual([eval_batch_size, 300, 300, 1], features[ |
|
fields.InputDataFields.image_additional_channels].shape.as_list()) |
|
self.assertEqual( |
|
tf.uint8, |
|
features[fields.InputDataFields.image_additional_channels].dtype) |
|
self.assertAllEqual([eval_batch_size], |
|
features[inputs.HASH_KEY].shape.as_list()) |
|
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100, 4], |
|
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_boxes].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100, model_config.ssd.num_classes], |
|
labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_classes].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_weights].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_area].shape.as_list()) |
|
self.assertEqual(tf.float32, |
|
labels[fields.InputDataFields.groundtruth_area].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) |
|
self.assertEqual(tf.bool, |
|
labels[fields.InputDataFields.groundtruth_is_crowd].dtype) |
|
self.assertAllEqual( |
|
[eval_batch_size, 100], |
|
labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) |
|
self.assertEqual(tf.int32, |
|
labels[fields.InputDataFields.groundtruth_difficult].dtype) |
|
|
|
def test_predict_input(self): |
|
"""Tests the predict input function.""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
predict_input_fn = inputs.create_predict_input_fn( |
|
model_config=configs['model'], |
|
predict_input_config=configs['eval_input_configs'][0]) |
|
serving_input_receiver = predict_input_fn() |
|
|
|
image = serving_input_receiver.features[fields.InputDataFields.image] |
|
receiver_tensors = serving_input_receiver.receiver_tensors[ |
|
inputs.SERVING_FED_EXAMPLE_KEY] |
|
self.assertEqual([1, 300, 300, 3], image.shape.as_list()) |
|
self.assertEqual(tf.float32, image.dtype) |
|
self.assertEqual(tf.string, receiver_tensors.dtype) |
|
|
|
def test_predict_input_with_additional_channels(self): |
|
"""Tests the predict input function with additional channels.""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
configs['eval_input_configs'][0].num_additional_channels = 2 |
|
predict_input_fn = inputs.create_predict_input_fn( |
|
model_config=configs['model'], |
|
predict_input_config=configs['eval_input_configs'][0]) |
|
serving_input_receiver = predict_input_fn() |
|
|
|
image = serving_input_receiver.features[fields.InputDataFields.image] |
|
receiver_tensors = serving_input_receiver.receiver_tensors[ |
|
inputs.SERVING_FED_EXAMPLE_KEY] |
|
|
|
self.assertEqual([1, 300, 300, 5], image.shape.as_list()) |
|
self.assertEqual(tf.float32, image.dtype) |
|
self.assertEqual(tf.string, receiver_tensors.dtype) |
|
|
|
def test_error_with_bad_train_config(self): |
|
"""Tests that a TypeError is raised with improper train config.""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
configs['model'].ssd.num_classes = 37 |
|
train_input_fn = inputs.create_train_input_fn( |
|
train_config=configs['eval_config'], |
|
train_input_config=configs['train_input_config'], |
|
model_config=configs['model']) |
|
with self.assertRaises(TypeError): |
|
train_input_fn() |
|
|
|
def test_error_with_bad_train_input_config(self): |
|
"""Tests that a TypeError is raised with improper train input config.""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
configs['model'].ssd.num_classes = 37 |
|
train_input_fn = inputs.create_train_input_fn( |
|
train_config=configs['train_config'], |
|
train_input_config=configs['model'], |
|
model_config=configs['model']) |
|
with self.assertRaises(TypeError): |
|
train_input_fn() |
|
|
|
def test_error_with_bad_train_model_config(self): |
|
"""Tests that a TypeError is raised with improper train model config.""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
configs['model'].ssd.num_classes = 37 |
|
train_input_fn = inputs.create_train_input_fn( |
|
train_config=configs['train_config'], |
|
train_input_config=configs['train_input_config'], |
|
model_config=configs['train_config']) |
|
with self.assertRaises(TypeError): |
|
train_input_fn() |
|
|
|
def test_error_with_bad_eval_config(self): |
|
"""Tests that a TypeError is raised with improper eval config.""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
configs['model'].ssd.num_classes = 37 |
|
eval_input_fn = inputs.create_eval_input_fn( |
|
eval_config=configs['train_config'], |
|
eval_input_config=configs['eval_input_configs'][0], |
|
model_config=configs['model']) |
|
with self.assertRaises(TypeError): |
|
eval_input_fn() |
|
|
|
def test_error_with_bad_eval_input_config(self): |
|
"""Tests that a TypeError is raised with improper eval input config.""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
configs['model'].ssd.num_classes = 37 |
|
eval_input_fn = inputs.create_eval_input_fn( |
|
eval_config=configs['eval_config'], |
|
eval_input_config=configs['model'], |
|
model_config=configs['model']) |
|
with self.assertRaises(TypeError): |
|
eval_input_fn() |
|
|
|
def test_error_with_bad_eval_model_config(self): |
|
"""Tests that a TypeError is raised with improper eval model config.""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
configs['model'].ssd.num_classes = 37 |
|
eval_input_fn = inputs.create_eval_input_fn( |
|
eval_config=configs['eval_config'], |
|
eval_input_config=configs['eval_input_configs'][0], |
|
model_config=configs['eval_config']) |
|
with self.assertRaises(TypeError): |
|
eval_input_fn() |
|
|
|
def test_output_equal_in_replace_empty_string_with_random_number(self): |
|
string_placeholder = tf.placeholder(tf.string, shape=[]) |
|
replaced_string = inputs._replace_empty_string_with_random_number( |
|
string_placeholder) |
|
|
|
test_string = b'hello world' |
|
feed_dict = {string_placeholder: test_string} |
|
|
|
with self.test_session() as sess: |
|
out_string = sess.run(replaced_string, feed_dict=feed_dict) |
|
|
|
self.assertEqual(test_string, out_string) |
|
|
|
def test_output_is_integer_in_replace_empty_string_with_random_number(self): |
|
|
|
string_placeholder = tf.placeholder(tf.string, shape=[]) |
|
replaced_string = inputs._replace_empty_string_with_random_number( |
|
string_placeholder) |
|
|
|
empty_string = '' |
|
feed_dict = {string_placeholder: empty_string} |
|
with self.test_session() as sess: |
|
out_string = sess.run(replaced_string, feed_dict=feed_dict) |
|
|
|
is_integer = True |
|
try: |
|
|
|
|
|
int(out_string) |
|
except ValueError: |
|
is_integer = False |
|
|
|
self.assertTrue(is_integer) |
|
|
|
def test_force_no_resize(self): |
|
"""Tests the functionality of force_no_reisze option.""" |
|
configs = _get_configs_for_model('ssd_inception_v2_pets') |
|
configs['eval_config'].force_no_resize = True |
|
|
|
eval_input_fn = inputs.create_eval_input_fn( |
|
eval_config=configs['eval_config'], |
|
eval_input_config=configs['eval_input_configs'][0], |
|
model_config=configs['model'] |
|
) |
|
train_input_fn = inputs.create_train_input_fn( |
|
train_config=configs['train_config'], |
|
train_input_config=configs['train_input_config'], |
|
model_config=configs['model'] |
|
) |
|
|
|
features_train, _ = _make_initializable_iterator( |
|
train_input_fn()).get_next() |
|
|
|
features_eval, _ = _make_initializable_iterator( |
|
eval_input_fn()).get_next() |
|
|
|
images_train, images_eval = features_train['image'], features_eval['image'] |
|
|
|
self.assertEqual([1, None, None, 3], images_eval.shape.as_list()) |
|
self.assertEqual([24, 300, 300, 3], images_train.shape.as_list()) |
|
|
|
|
|
class DataAugmentationFnTest(test_case.TestCase): |
|
|
|
def test_apply_image_and_box_augmentation(self): |
|
data_augmentation_options = [ |
|
(preprocessor.resize_image, { |
|
'new_height': 20, |
|
'new_width': 20, |
|
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR |
|
}), |
|
(preprocessor.scale_boxes_to_pixel_coordinates, {}), |
|
] |
|
data_augmentation_fn = functools.partial( |
|
inputs.augment_input_data, |
|
data_augmentation_options=data_augmentation_options) |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)) |
|
} |
|
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) |
|
return (augmented_tensor_dict[fields.InputDataFields.image], |
|
augmented_tensor_dict[fields.InputDataFields. |
|
groundtruth_boxes]) |
|
image, groundtruth_boxes = self.execute_cpu(graph_fn, []) |
|
self.assertAllEqual(image.shape, [20, 20, 3]) |
|
self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]]) |
|
|
|
def test_apply_image_and_box_augmentation_with_scores(self): |
|
data_augmentation_options = [ |
|
(preprocessor.resize_image, { |
|
'new_height': 20, |
|
'new_width': 20, |
|
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR |
|
}), |
|
(preprocessor.scale_boxes_to_pixel_coordinates, {}), |
|
] |
|
data_augmentation_fn = functools.partial( |
|
inputs.augment_input_data, |
|
data_augmentation_options=data_augmentation_options) |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([1.0], np.float32)), |
|
fields.InputDataFields.groundtruth_weights: |
|
tf.constant(np.array([0.8], np.float32)), |
|
} |
|
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) |
|
return (augmented_tensor_dict[fields.InputDataFields.image], |
|
augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes], |
|
augmented_tensor_dict[fields.InputDataFields.groundtruth_classes], |
|
augmented_tensor_dict[fields.InputDataFields.groundtruth_weights]) |
|
(image, groundtruth_boxes, |
|
groundtruth_classes, groundtruth_weights) = self.execute_cpu(graph_fn, []) |
|
self.assertAllEqual(image.shape, [20, 20, 3]) |
|
self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]]) |
|
self.assertAllClose(groundtruth_classes.shape, [1.0]) |
|
self.assertAllClose(groundtruth_weights, [0.8]) |
|
|
|
def test_include_masks_in_data_augmentation(self): |
|
data_augmentation_options = [ |
|
(preprocessor.resize_image, { |
|
'new_height': 20, |
|
'new_width': 20, |
|
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR |
|
}) |
|
] |
|
data_augmentation_fn = functools.partial( |
|
inputs.augment_input_data, |
|
data_augmentation_options=data_augmentation_options) |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_instance_masks: |
|
tf.constant(np.zeros([2, 10, 10], np.uint8)) |
|
} |
|
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) |
|
return (augmented_tensor_dict[fields.InputDataFields.image], |
|
augmented_tensor_dict[fields.InputDataFields. |
|
groundtruth_instance_masks]) |
|
image, masks = self.execute_cpu(graph_fn, []) |
|
self.assertAllEqual(image.shape, [20, 20, 3]) |
|
self.assertAllEqual(masks.shape, [2, 20, 20]) |
|
|
|
def test_include_keypoints_in_data_augmentation(self): |
|
data_augmentation_options = [ |
|
(preprocessor.resize_image, { |
|
'new_height': 20, |
|
'new_width': 20, |
|
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR |
|
}), |
|
(preprocessor.scale_boxes_to_pixel_coordinates, {}), |
|
] |
|
data_augmentation_fn = functools.partial( |
|
inputs.augment_input_data, |
|
data_augmentation_options=data_augmentation_options) |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)), |
|
fields.InputDataFields.groundtruth_keypoints: |
|
tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32)) |
|
} |
|
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) |
|
return (augmented_tensor_dict[fields.InputDataFields.image], |
|
augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes], |
|
augmented_tensor_dict[fields.InputDataFields. |
|
groundtruth_keypoints]) |
|
image, boxes, keypoints = self.execute_cpu(graph_fn, []) |
|
self.assertAllEqual(image.shape, [20, 20, 3]) |
|
self.assertAllClose(boxes, [[10, 10, 20, 20]]) |
|
self.assertAllClose(keypoints, [[[10, 20], [10, 10]]]) |
|
|
|
|
|
def _fake_model_preprocessor_fn(image): |
|
return (image, tf.expand_dims(tf.shape(image)[1:], axis=0)) |
|
|
|
|
|
def _fake_image_resizer_fn(image, mask): |
|
return (image, mask, tf.shape(image)) |
|
|
|
|
|
def _fake_resize50_preprocess_fn(image): |
|
image = image[0] |
|
image, shape = preprocessor.resize_to_range( |
|
image, min_dimension=50, max_dimension=50, pad_to_max_dimension=True) |
|
|
|
return tf.expand_dims(image, 0), tf.expand_dims(shape, axis=0) |
|
|
|
|
|
class DataTransformationFnTest(test_case.TestCase, parameterized.TestCase): |
|
|
|
def test_combine_additional_channels_if_present(self): |
|
image = np.random.rand(4, 4, 3).astype(np.float32) |
|
additional_channels = np.random.rand(4, 4, 2).astype(np.float32) |
|
def graph_fn(image, additional_channels): |
|
tensor_dict = { |
|
fields.InputDataFields.image: image, |
|
fields.InputDataFields.image_additional_channels: additional_channels, |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant([1, 1], tf.int32) |
|
} |
|
|
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_model_preprocessor_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=1) |
|
out_tensors = input_transformation_fn(tensor_dict=tensor_dict) |
|
return out_tensors[fields.InputDataFields.image] |
|
out_image = self.execute_cpu(graph_fn, [image, additional_channels]) |
|
self.assertAllEqual(out_image.dtype, tf.float32) |
|
self.assertAllEqual(out_image.shape, [4, 4, 5]) |
|
self.assertAllClose(out_image, np.concatenate((image, additional_channels), |
|
axis=2)) |
|
|
|
def test_use_multiclass_scores_when_present(self): |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3). |
|
astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], |
|
np.float32)), |
|
fields.InputDataFields.multiclass_scores: |
|
tf.constant(np.array([0.2, 0.3, 0.5, 0.1, 0.6, 0.3], np.float32)), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([1, 2], np.int32)) |
|
} |
|
|
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_model_preprocessor_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=3, use_multiclass_scores=True) |
|
transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) |
|
return transformed_inputs[fields.InputDataFields.groundtruth_classes] |
|
groundtruth_classes = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose( |
|
np.array([[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]], np.float32), |
|
groundtruth_classes) |
|
|
|
@unittest.skipIf(tf_version.is_tf2(), ('Skipping due to different behaviour ' |
|
'in TF 2.X')) |
|
def test_use_multiclass_scores_when_not_present(self): |
|
def graph_fn(): |
|
zero_num_elements = tf.random.uniform([], minval=0, maxval=1, |
|
dtype=tf.int32) |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], |
|
np.float32)), |
|
fields.InputDataFields.multiclass_scores: tf.zeros(zero_num_elements), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([1, 2], np.int32)) |
|
} |
|
|
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_model_preprocessor_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=3, use_multiclass_scores=True) |
|
|
|
transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) |
|
return transformed_inputs[fields.InputDataFields.groundtruth_classes] |
|
groundtruth_classes = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose( |
|
np.array([[0, 1, 0], [0, 0, 1]], np.float32), |
|
groundtruth_classes) |
|
|
|
@parameterized.parameters( |
|
{'labeled_classes': [1, 2]}, |
|
{'labeled_classes': []}, |
|
{'labeled_classes': [1, -1, 2]} |
|
) |
|
def test_use_labeled_classes(self, labeled_classes): |
|
|
|
def compute_fn(image, groundtruth_boxes, groundtruth_classes, |
|
groundtruth_labeled_classes): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
image, |
|
fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes, |
|
fields.InputDataFields.groundtruth_classes: |
|
groundtruth_classes, |
|
fields.InputDataFields.groundtruth_labeled_classes: |
|
groundtruth_labeled_classes |
|
} |
|
|
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_model_preprocessor_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=3) |
|
return input_transformation_fn(tensor_dict=tensor_dict) |
|
|
|
image = np.random.rand(4, 4, 3).astype(np.float32) |
|
groundtruth_boxes = np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32) |
|
groundtruth_classes = np.array([1, 2], np.int32) |
|
groundtruth_labeled_classes = np.array(labeled_classes, np.int32) |
|
|
|
transformed_inputs = self.execute_cpu(compute_fn, [ |
|
image, groundtruth_boxes, groundtruth_classes, |
|
groundtruth_labeled_classes |
|
]) |
|
|
|
if labeled_classes == [1, 2] or labeled_classes == [1, -1, 2]: |
|
transformed_labeled_classes = [1, 1, 0] |
|
elif not labeled_classes: |
|
transformed_labeled_classes = [1, 1, 1] |
|
else: |
|
logging.exception('Unexpected labeled_classes %r', labeled_classes) |
|
|
|
self.assertAllEqual( |
|
np.array(transformed_labeled_classes, np.float32), |
|
transformed_inputs[fields.InputDataFields.groundtruth_labeled_classes]) |
|
|
|
def test_returns_correct_class_label_encodings(self): |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([3, 1], np.int32)) |
|
} |
|
num_classes = 3 |
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_model_preprocessor_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=num_classes) |
|
transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) |
|
return (transformed_inputs[fields.InputDataFields.groundtruth_classes], |
|
transformed_inputs[fields.InputDataFields. |
|
groundtruth_confidences]) |
|
(groundtruth_classes, groundtruth_confidences) = self.execute_cpu(graph_fn, |
|
[]) |
|
self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]]) |
|
self.assertAllClose(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]]) |
|
|
|
def test_returns_correct_labels_with_unrecognized_class(self): |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant( |
|
np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]], |
|
np.float32)), |
|
fields.InputDataFields.groundtruth_area: |
|
tf.constant(np.array([.5, .4, .3])), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([3, -1, 1], np.int32)), |
|
fields.InputDataFields.groundtruth_keypoints: |
|
tf.constant( |
|
np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]], |
|
np.float32)), |
|
fields.InputDataFields.groundtruth_keypoint_visibilities: |
|
tf.constant([[True, True], [False, False], [True, True]]), |
|
fields.InputDataFields.groundtruth_instance_masks: |
|
tf.constant(np.random.rand(3, 4, 4).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_is_crowd: |
|
tf.constant([False, True, False]), |
|
fields.InputDataFields.groundtruth_difficult: |
|
tf.constant(np.array([0, 0, 1], np.int32)) |
|
} |
|
|
|
num_classes = 3 |
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_model_preprocessor_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=num_classes) |
|
transformed_inputs = input_transformation_fn(tensor_dict) |
|
return (transformed_inputs[fields.InputDataFields.groundtruth_classes], |
|
transformed_inputs[fields.InputDataFields.num_groundtruth_boxes], |
|
transformed_inputs[fields.InputDataFields.groundtruth_area], |
|
transformed_inputs[fields.InputDataFields. |
|
groundtruth_confidences], |
|
transformed_inputs[fields.InputDataFields.groundtruth_boxes], |
|
transformed_inputs[fields.InputDataFields.groundtruth_keypoints], |
|
transformed_inputs[fields.InputDataFields. |
|
groundtruth_keypoint_visibilities], |
|
transformed_inputs[fields.InputDataFields. |
|
groundtruth_instance_masks], |
|
transformed_inputs[fields.InputDataFields.groundtruth_is_crowd], |
|
transformed_inputs[fields.InputDataFields.groundtruth_difficult]) |
|
(groundtruth_classes, num_groundtruth_boxes, groundtruth_area, |
|
groundtruth_confidences, groundtruth_boxes, groundtruth_keypoints, |
|
groundtruth_keypoint_visibilities, groundtruth_instance_masks, |
|
groundtruth_is_crowd, groundtruth_difficult) = self.execute_cpu(graph_fn, |
|
[]) |
|
|
|
self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]]) |
|
self.assertAllEqual(num_groundtruth_boxes, 2) |
|
self.assertAllClose(groundtruth_area, [.5, .3]) |
|
self.assertAllEqual(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]]) |
|
self.assertAllClose(groundtruth_boxes, [[0, 0, 1, 1], [.5, .5, 1, 1]]) |
|
self.assertAllClose(groundtruth_keypoints, [[[.1, .1]], [[.5, .5]]]) |
|
self.assertAllEqual(groundtruth_keypoint_visibilities, |
|
[[True, True], [True, True]]) |
|
self.assertAllEqual(groundtruth_instance_masks.shape, [2, 4, 4]) |
|
self.assertAllEqual(groundtruth_is_crowd, [False, False]) |
|
self.assertAllEqual(groundtruth_difficult, [0, 1]) |
|
|
|
def test_returns_correct_merged_boxes(self): |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], |
|
np.float32)), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([3, 1], np.int32)) |
|
} |
|
|
|
num_classes = 3 |
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_model_preprocessor_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=num_classes, |
|
merge_multiple_boxes=True) |
|
transformed_inputs = input_transformation_fn(tensor_dict) |
|
return (transformed_inputs[fields.InputDataFields.groundtruth_boxes], |
|
transformed_inputs[fields.InputDataFields.groundtruth_classes], |
|
transformed_inputs[fields.InputDataFields. |
|
groundtruth_confidences], |
|
transformed_inputs[fields.InputDataFields.num_groundtruth_boxes]) |
|
(groundtruth_boxes, groundtruth_classes, groundtruth_confidences, |
|
num_groundtruth_boxes) = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose( |
|
groundtruth_boxes, |
|
[[.5, .5, 1., 1.]]) |
|
self.assertAllClose( |
|
groundtruth_classes, |
|
[[1, 0, 1]]) |
|
self.assertAllClose( |
|
groundtruth_confidences, |
|
[[1, 0, 1]]) |
|
self.assertAllClose( |
|
num_groundtruth_boxes, |
|
1) |
|
|
|
def test_returns_correct_groundtruth_confidences_when_input_present(self): |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([3, 1], np.int32)), |
|
fields.InputDataFields.groundtruth_confidences: |
|
tf.constant(np.array([1.0, -1.0], np.float32)) |
|
} |
|
num_classes = 3 |
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_model_preprocessor_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=num_classes) |
|
transformed_inputs = input_transformation_fn(tensor_dict) |
|
return (transformed_inputs[fields.InputDataFields.groundtruth_classes], |
|
transformed_inputs[fields.InputDataFields. |
|
groundtruth_confidences]) |
|
groundtruth_classes, groundtruth_confidences = self.execute_cpu(graph_fn, |
|
[]) |
|
self.assertAllClose( |
|
groundtruth_classes, |
|
[[0, 0, 1], [1, 0, 0]]) |
|
self.assertAllClose( |
|
groundtruth_confidences, |
|
[[0, 0, 1], [-1, 0, 0]]) |
|
|
|
def test_returns_resized_masks(self): |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_instance_masks: |
|
tf.constant(np.random.rand(2, 4, 4).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([3, 1], np.int32)), |
|
fields.InputDataFields.original_image_spatial_shape: |
|
tf.constant(np.array([4, 4], np.int32)) |
|
} |
|
|
|
def fake_image_resizer_fn(image, masks=None): |
|
resized_image = tf.image.resize_images(image, [8, 8]) |
|
results = [resized_image] |
|
if masks is not None: |
|
resized_masks = tf.transpose( |
|
tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]), |
|
[2, 0, 1]) |
|
results.append(resized_masks) |
|
results.append(tf.shape(resized_image)) |
|
return results |
|
|
|
num_classes = 3 |
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_model_preprocessor_fn, |
|
image_resizer_fn=fake_image_resizer_fn, |
|
num_classes=num_classes, |
|
retain_original_image=True) |
|
transformed_inputs = input_transformation_fn(tensor_dict) |
|
return (transformed_inputs[fields.InputDataFields.original_image], |
|
transformed_inputs[fields.InputDataFields. |
|
original_image_spatial_shape], |
|
transformed_inputs[fields.InputDataFields. |
|
groundtruth_instance_masks]) |
|
(original_image, original_image_shape, |
|
groundtruth_instance_masks) = self.execute_cpu(graph_fn, []) |
|
self.assertEqual(original_image.dtype, np.uint8) |
|
self.assertAllEqual(original_image_shape, [4, 4]) |
|
self.assertAllEqual(original_image.shape, [8, 8, 3]) |
|
self.assertAllEqual(groundtruth_instance_masks.shape, [2, 8, 8]) |
|
|
|
def test_applies_model_preprocess_fn_to_image_tensor(self): |
|
np_image = np.random.randint(256, size=(4, 4, 3)) |
|
def graph_fn(image): |
|
tensor_dict = { |
|
fields.InputDataFields.image: image, |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([3, 1], np.int32)) |
|
} |
|
|
|
def fake_model_preprocessor_fn(image): |
|
return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0)) |
|
|
|
num_classes = 3 |
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=fake_model_preprocessor_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=num_classes) |
|
transformed_inputs = input_transformation_fn(tensor_dict) |
|
return (transformed_inputs[fields.InputDataFields.image], |
|
transformed_inputs[fields.InputDataFields.true_image_shape]) |
|
image, true_image_shape = self.execute_cpu(graph_fn, [np_image]) |
|
self.assertAllClose(image, np_image / 255.) |
|
self.assertAllClose(true_image_shape, [4, 4, 3]) |
|
|
|
def test_applies_data_augmentation_fn_to_tensor_dict(self): |
|
np_image = np.random.randint(256, size=(4, 4, 3)) |
|
def graph_fn(image): |
|
tensor_dict = { |
|
fields.InputDataFields.image: image, |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([3, 1], np.int32)) |
|
} |
|
|
|
def add_one_data_augmentation_fn(tensor_dict): |
|
return {key: value + 1 for key, value in tensor_dict.items()} |
|
|
|
num_classes = 4 |
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_model_preprocessor_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=num_classes, |
|
data_augmentation_fn=add_one_data_augmentation_fn) |
|
transformed_inputs = input_transformation_fn(tensor_dict) |
|
return (transformed_inputs[fields.InputDataFields.image], |
|
transformed_inputs[fields.InputDataFields.groundtruth_classes]) |
|
image, groundtruth_classes = self.execute_cpu(graph_fn, [np_image]) |
|
self.assertAllEqual(image, np_image + 1) |
|
self.assertAllEqual( |
|
groundtruth_classes, |
|
[[0, 0, 0, 1], [0, 1, 0, 0]]) |
|
|
|
def test_applies_data_augmentation_fn_before_model_preprocess_fn(self): |
|
np_image = np.random.randint(256, size=(4, 4, 3)) |
|
def graph_fn(image): |
|
tensor_dict = { |
|
fields.InputDataFields.image: image, |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([3, 1], np.int32)) |
|
} |
|
|
|
def mul_two_model_preprocessor_fn(image): |
|
return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0)) |
|
|
|
def add_five_to_image_data_augmentation_fn(tensor_dict): |
|
tensor_dict[fields.InputDataFields.image] += 5 |
|
return tensor_dict |
|
|
|
num_classes = 4 |
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=mul_two_model_preprocessor_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=num_classes, |
|
data_augmentation_fn=add_five_to_image_data_augmentation_fn) |
|
transformed_inputs = input_transformation_fn(tensor_dict) |
|
return transformed_inputs[fields.InputDataFields.image] |
|
image = self.execute_cpu(graph_fn, [np_image]) |
|
self.assertAllEqual(image, (np_image + 5) * 2) |
|
|
|
def test_resize_with_padding(self): |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(100, 50, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]], |
|
np.float32)), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([1, 2], np.int32)), |
|
fields.InputDataFields.groundtruth_keypoints: |
|
tf.constant([[[0.1, 0.2]], [[0.3, 0.4]]]), |
|
} |
|
|
|
num_classes = 3 |
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_resize50_preprocess_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=num_classes,) |
|
transformed_inputs = input_transformation_fn(tensor_dict) |
|
return (transformed_inputs[fields.InputDataFields.groundtruth_boxes], |
|
transformed_inputs[fields.InputDataFields.groundtruth_keypoints]) |
|
groundtruth_boxes, groundtruth_keypoints = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose( |
|
groundtruth_boxes, |
|
[[.5, .25, 1., .5], [.0, .0, .5, .25]]) |
|
self.assertAllClose( |
|
groundtruth_keypoints, |
|
[[[.1, .1]], [[.3, .2]]]) |
|
|
|
def test_groundtruth_keypoint_weights(self): |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(100, 50, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]], |
|
np.float32)), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([1, 2], np.int32)), |
|
fields.InputDataFields.groundtruth_keypoints: |
|
tf.constant([[[0.1, 0.2], [0.3, 0.4]], |
|
[[0.5, 0.6], [0.7, 0.8]]]), |
|
fields.InputDataFields.groundtruth_keypoint_visibilities: |
|
tf.constant([[True, False], [True, True]]), |
|
} |
|
|
|
num_classes = 3 |
|
keypoint_type_weight = [1.0, 2.0] |
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_resize50_preprocess_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=num_classes, |
|
keypoint_type_weight=keypoint_type_weight) |
|
transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) |
|
return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints], |
|
transformed_inputs[fields.InputDataFields. |
|
groundtruth_keypoint_weights]) |
|
|
|
groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu( |
|
graph_fn, []) |
|
self.assertAllClose( |
|
groundtruth_keypoints, |
|
[[[0.1, 0.1], [0.3, 0.2]], |
|
[[0.5, 0.3], [0.7, 0.4]]]) |
|
self.assertAllClose( |
|
groundtruth_keypoint_weights, |
|
[[1.0, 0.0], [1.0, 2.0]]) |
|
|
|
def test_groundtruth_keypoint_weights_default(self): |
|
def graph_fn(): |
|
tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.constant(np.random.rand(100, 50, 3).astype(np.float32)), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]], |
|
np.float32)), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant(np.array([1, 2], np.int32)), |
|
fields.InputDataFields.groundtruth_keypoints: |
|
tf.constant([[[0.1, 0.2], [0.3, 0.4]], |
|
[[0.5, 0.6], [0.7, 0.8]]]), |
|
} |
|
|
|
num_classes = 3 |
|
input_transformation_fn = functools.partial( |
|
inputs.transform_input_data, |
|
model_preprocess_fn=_fake_resize50_preprocess_fn, |
|
image_resizer_fn=_fake_image_resizer_fn, |
|
num_classes=num_classes) |
|
transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) |
|
return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints], |
|
transformed_inputs[fields.InputDataFields. |
|
groundtruth_keypoint_weights]) |
|
groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu( |
|
graph_fn, []) |
|
self.assertAllClose( |
|
groundtruth_keypoints, |
|
[[[0.1, 0.1], [0.3, 0.2]], |
|
[[0.5, 0.3], [0.7, 0.4]]]) |
|
self.assertAllClose( |
|
groundtruth_keypoint_weights, |
|
[[1.0, 1.0], [1.0, 1.0]]) |
|
|
|
|
|
class PadInputDataToStaticShapesFnTest(test_case.TestCase): |
|
|
|
def test_pad_images_boxes_and_classes(self): |
|
input_tensor_dict = { |
|
fields.InputDataFields.image: |
|
tf.random.uniform([3, 3, 3]), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.random.uniform([2, 4]), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.random.uniform([2, 3], minval=0, maxval=2, dtype=tf.int32), |
|
fields.InputDataFields.true_image_shape: |
|
tf.constant([3, 3, 3]), |
|
fields.InputDataFields.original_image_spatial_shape: |
|
tf.constant([3, 3]) |
|
} |
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes( |
|
tensor_dict=input_tensor_dict, |
|
max_num_boxes=3, |
|
num_classes=3, |
|
spatial_image_shape=[5, 6]) |
|
|
|
self.assertAllEqual( |
|
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), |
|
[5, 6, 3]) |
|
self.assertAllEqual( |
|
padded_tensor_dict[fields.InputDataFields.true_image_shape] |
|
.shape.as_list(), [3]) |
|
self.assertAllEqual( |
|
padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape] |
|
.shape.as_list(), [2]) |
|
self.assertAllEqual( |
|
padded_tensor_dict[fields.InputDataFields.groundtruth_boxes] |
|
.shape.as_list(), [3, 4]) |
|
self.assertAllEqual( |
|
padded_tensor_dict[fields.InputDataFields.groundtruth_classes] |
|
.shape.as_list(), [3, 3]) |
|
|
|
def test_clip_boxes_and_classes(self): |
|
def graph_fn(): |
|
input_tensor_dict = { |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.random.uniform([5, 4]), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.random.uniform([2, 3], maxval=10, dtype=tf.int32), |
|
fields.InputDataFields.num_groundtruth_boxes: |
|
tf.constant(5) |
|
} |
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes( |
|
tensor_dict=input_tensor_dict, |
|
max_num_boxes=3, |
|
num_classes=3, |
|
spatial_image_shape=[5, 6]) |
|
return (padded_tensor_dict[fields.InputDataFields.groundtruth_boxes], |
|
padded_tensor_dict[fields.InputDataFields.groundtruth_classes], |
|
padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes]) |
|
(groundtruth_boxes, groundtruth_classes, |
|
num_groundtruth_boxes) = self.execute_cpu(graph_fn, []) |
|
self.assertAllEqual(groundtruth_boxes.shape, [3, 4]) |
|
self.assertAllEqual(groundtruth_classes.shape, [3, 3]) |
|
self.assertEqual(num_groundtruth_boxes, 3) |
|
|
|
def test_images_and_additional_channels(self): |
|
input_tensor_dict = { |
|
fields.InputDataFields.image: |
|
test_utils.image_with_dynamic_shape(4, 3, 5), |
|
fields.InputDataFields.image_additional_channels: |
|
test_utils.image_with_dynamic_shape(4, 3, 2), |
|
} |
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes( |
|
tensor_dict=input_tensor_dict, |
|
max_num_boxes=3, |
|
num_classes=3, |
|
spatial_image_shape=[5, 6]) |
|
|
|
|
|
|
|
self.assertAllEqual( |
|
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), |
|
[5, 6, 5]) |
|
self.assertAllEqual( |
|
padded_tensor_dict[fields.InputDataFields.image_additional_channels] |
|
.shape.as_list(), [5, 6, 2]) |
|
|
|
def test_images_and_additional_channels_errors(self): |
|
input_tensor_dict = { |
|
fields.InputDataFields.image: |
|
test_utils.image_with_dynamic_shape(10, 10, 3), |
|
fields.InputDataFields.image_additional_channels: |
|
test_utils.image_with_dynamic_shape(10, 10, 2), |
|
fields.InputDataFields.original_image: |
|
test_utils.image_with_dynamic_shape(10, 10, 3), |
|
} |
|
with self.assertRaises(ValueError): |
|
_ = inputs.pad_input_data_to_static_shapes( |
|
tensor_dict=input_tensor_dict, |
|
max_num_boxes=3, |
|
num_classes=3, |
|
spatial_image_shape=[5, 6]) |
|
|
|
def test_gray_images(self): |
|
input_tensor_dict = { |
|
fields.InputDataFields.image: |
|
test_utils.image_with_dynamic_shape(4, 4, 1), |
|
} |
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes( |
|
tensor_dict=input_tensor_dict, |
|
max_num_boxes=3, |
|
num_classes=3, |
|
spatial_image_shape=[5, 6]) |
|
|
|
self.assertAllEqual( |
|
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), |
|
[5, 6, 1]) |
|
|
|
def test_gray_images_and_additional_channels(self): |
|
input_tensor_dict = { |
|
fields.InputDataFields.image: |
|
test_utils.image_with_dynamic_shape(4, 4, 3), |
|
fields.InputDataFields.image_additional_channels: |
|
test_utils.image_with_dynamic_shape(4, 4, 2), |
|
} |
|
|
|
|
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes( |
|
tensor_dict=input_tensor_dict, |
|
max_num_boxes=3, |
|
num_classes=3, |
|
spatial_image_shape=[5, 6]) |
|
|
|
self.assertAllEqual( |
|
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), |
|
[5, 6, 3]) |
|
self.assertAllEqual( |
|
padded_tensor_dict[fields.InputDataFields.image_additional_channels] |
|
.shape.as_list(), [5, 6, 2]) |
|
|
|
def test_keypoints(self): |
|
keypoints = test_utils.keypoints_with_dynamic_shape(10, 16, 4) |
|
visibilities = tf.cast(tf.random.uniform(tf.shape(keypoints)[:-1], minval=0, |
|
maxval=2, dtype=tf.int32), tf.bool) |
|
input_tensor_dict = { |
|
fields.InputDataFields.groundtruth_keypoints: |
|
test_utils.keypoints_with_dynamic_shape(10, 16, 4), |
|
fields.InputDataFields.groundtruth_keypoint_visibilities: |
|
visibilities |
|
} |
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes( |
|
tensor_dict=input_tensor_dict, |
|
max_num_boxes=3, |
|
num_classes=3, |
|
spatial_image_shape=[5, 6]) |
|
|
|
self.assertAllEqual( |
|
padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints] |
|
.shape.as_list(), [3, 16, 4]) |
|
self.assertAllEqual( |
|
padded_tensor_dict[ |
|
fields.InputDataFields.groundtruth_keypoint_visibilities] |
|
.shape.as_list(), [3, 16]) |
|
|
|
def test_context_features(self): |
|
context_memory_size = 8 |
|
context_feature_length = 10 |
|
max_num_context_features = 20 |
|
def graph_fn(): |
|
input_tensor_dict = { |
|
fields.InputDataFields.context_features: |
|
tf.ones([context_memory_size, context_feature_length]), |
|
fields.InputDataFields.context_feature_length: |
|
tf.constant(context_feature_length) |
|
} |
|
padded_tensor_dict = inputs.pad_input_data_to_static_shapes( |
|
tensor_dict=input_tensor_dict, |
|
max_num_boxes=3, |
|
num_classes=3, |
|
spatial_image_shape=[5, 6], |
|
max_num_context_features=max_num_context_features, |
|
context_feature_length=context_feature_length) |
|
|
|
self.assertAllEqual( |
|
padded_tensor_dict[ |
|
fields.InputDataFields.context_features].shape.as_list(), |
|
[max_num_context_features, context_feature_length]) |
|
return padded_tensor_dict[fields.InputDataFields.valid_context_size] |
|
|
|
valid_context_size = self.execute_cpu(graph_fn, []) |
|
self.assertEqual(valid_context_size, context_memory_size) |
|
|
|
|
|
class NegativeSizeTest(test_case.TestCase): |
|
"""Test for inputs and related funcitons.""" |
|
|
|
def test_negative_size_error(self): |
|
"""Test that error is raised for negative size boxes.""" |
|
|
|
def graph_fn(): |
|
tensors = { |
|
fields.InputDataFields.image: tf.zeros((128, 128, 3)), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant([1, 1], tf.int32), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant([[0.5, 0.5, 0.4, 0.5]], tf.float32) |
|
} |
|
tensors = inputs.transform_input_data( |
|
tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn, |
|
num_classes=10) |
|
return tensors[fields.InputDataFields.groundtruth_boxes] |
|
with self.assertRaises(tf.errors.InvalidArgumentError): |
|
self.execute_cpu(graph_fn, []) |
|
|
|
def test_negative_size_no_assert(self): |
|
"""Test that negative size boxes are filtered out without assert. |
|
|
|
This test simulates the behaviour when we run on TPU and Assert ops are |
|
not supported. |
|
""" |
|
|
|
tensors = { |
|
fields.InputDataFields.image: tf.zeros((128, 128, 3)), |
|
fields.InputDataFields.groundtruth_classes: |
|
tf.constant([1, 1], tf.int32), |
|
fields.InputDataFields.groundtruth_boxes: |
|
tf.constant([[0.5, 0.5, 0.4, 0.5], [0.5, 0.5, 0.6, 0.6]], |
|
tf.float32) |
|
} |
|
|
|
with mock.patch.object(tf, 'Assert') as tf_assert: |
|
tf_assert.return_value = tf.no_op() |
|
tensors = inputs.transform_input_data( |
|
tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn, |
|
num_classes=10) |
|
|
|
self.assertAllClose(tensors[fields.InputDataFields.groundtruth_boxes], |
|
[[0.5, 0.5, 0.6, 0.6]]) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|