|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Detection model trainer. |
|
|
|
This file provides a generic training method that can be used to train a |
|
DetectionModel. |
|
""" |
|
|
|
import functools |
|
|
|
import tensorflow.compat.v1 as tf |
|
import tf_slim as slim |
|
|
|
from object_detection.builders import optimizer_builder |
|
from object_detection.builders import preprocessor_builder |
|
from object_detection.core import batcher |
|
from object_detection.core import preprocessor |
|
from object_detection.core import standard_fields as fields |
|
from object_detection.utils import ops as util_ops |
|
from object_detection.utils import variables_helper |
|
from deployment import model_deploy |
|
|
|
|
|
def create_input_queue(batch_size_per_clone, create_tensor_dict_fn, |
|
batch_queue_capacity, num_batch_queue_threads, |
|
prefetch_queue_capacity, data_augmentation_options): |
|
"""Sets up reader, prefetcher and returns input queue. |
|
|
|
Args: |
|
batch_size_per_clone: batch size to use per clone. |
|
create_tensor_dict_fn: function to create tensor dictionary. |
|
batch_queue_capacity: maximum number of elements to store within a queue. |
|
num_batch_queue_threads: number of threads to use for batching. |
|
prefetch_queue_capacity: maximum capacity of the queue used to prefetch |
|
assembled batches. |
|
data_augmentation_options: a list of tuples, where each tuple contains a |
|
data augmentation function and a dictionary containing arguments and their |
|
values (see preprocessor.py). |
|
|
|
Returns: |
|
input queue: a batcher.BatchQueue object holding enqueued tensor_dicts |
|
(which hold images, boxes and targets). To get a batch of tensor_dicts, |
|
call input_queue.Dequeue(). |
|
""" |
|
tensor_dict = create_tensor_dict_fn() |
|
|
|
tensor_dict[fields.InputDataFields.image] = tf.expand_dims( |
|
tensor_dict[fields.InputDataFields.image], 0) |
|
|
|
images = tensor_dict[fields.InputDataFields.image] |
|
float_images = tf.cast(images, dtype=tf.float32) |
|
tensor_dict[fields.InputDataFields.image] = float_images |
|
|
|
include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks |
|
in tensor_dict) |
|
include_keypoints = (fields.InputDataFields.groundtruth_keypoints |
|
in tensor_dict) |
|
include_multiclass_scores = (fields.InputDataFields.multiclass_scores |
|
in tensor_dict) |
|
if data_augmentation_options: |
|
tensor_dict = preprocessor.preprocess( |
|
tensor_dict, data_augmentation_options, |
|
func_arg_map=preprocessor.get_default_func_arg_map( |
|
include_label_weights=True, |
|
include_multiclass_scores=include_multiclass_scores, |
|
include_instance_masks=include_instance_masks, |
|
include_keypoints=include_keypoints)) |
|
|
|
input_queue = batcher.BatchQueue( |
|
tensor_dict, |
|
batch_size=batch_size_per_clone, |
|
batch_queue_capacity=batch_queue_capacity, |
|
num_batch_queue_threads=num_batch_queue_threads, |
|
prefetch_queue_capacity=prefetch_queue_capacity) |
|
return input_queue |
|
|
|
|
|
def get_inputs(input_queue, |
|
num_classes, |
|
merge_multiple_label_boxes=False, |
|
use_multiclass_scores=False): |
|
"""Dequeues batch and constructs inputs to object detection model. |
|
|
|
Args: |
|
input_queue: BatchQueue object holding enqueued tensor_dicts. |
|
num_classes: Number of classes. |
|
merge_multiple_label_boxes: Whether to merge boxes with multiple labels |
|
or not. Defaults to false. Merged boxes are represented with a single |
|
box and a k-hot encoding of the multiple labels associated with the |
|
boxes. |
|
use_multiclass_scores: Whether to use multiclass scores instead of |
|
groundtruth_classes. |
|
|
|
Returns: |
|
images: a list of 3-D float tensor of images. |
|
image_keys: a list of string keys for the images. |
|
locations_list: a list of tensors of shape [num_boxes, 4] |
|
containing the corners of the groundtruth boxes. |
|
classes_list: a list of padded one-hot (or K-hot) float32 tensors containing |
|
target classes. |
|
masks_list: a list of 3-D float tensors of shape [num_boxes, image_height, |
|
image_width] containing instance masks for objects if present in the |
|
input_queue. Else returns None. |
|
keypoints_list: a list of 3-D float tensors of shape [num_boxes, |
|
num_keypoints, 2] containing keypoints for objects if present in the |
|
input queue. Else returns None. |
|
weights_lists: a list of 1-D float32 tensors of shape [num_boxes] |
|
containing groundtruth weight for each box. |
|
""" |
|
read_data_list = input_queue.dequeue() |
|
label_id_offset = 1 |
|
def extract_images_and_targets(read_data): |
|
"""Extract images and targets from the input dict.""" |
|
image = read_data[fields.InputDataFields.image] |
|
key = '' |
|
if fields.InputDataFields.source_id in read_data: |
|
key = read_data[fields.InputDataFields.source_id] |
|
location_gt = read_data[fields.InputDataFields.groundtruth_boxes] |
|
classes_gt = tf.cast(read_data[fields.InputDataFields.groundtruth_classes], |
|
tf.int32) |
|
classes_gt -= label_id_offset |
|
|
|
if merge_multiple_label_boxes and use_multiclass_scores: |
|
raise ValueError( |
|
'Using both merge_multiple_label_boxes and use_multiclass_scores is' |
|
'not supported' |
|
) |
|
|
|
if merge_multiple_label_boxes: |
|
location_gt, classes_gt, _ = util_ops.merge_boxes_with_multiple_labels( |
|
location_gt, classes_gt, num_classes) |
|
classes_gt = tf.cast(classes_gt, tf.float32) |
|
elif use_multiclass_scores: |
|
classes_gt = tf.cast(read_data[fields.InputDataFields.multiclass_scores], |
|
tf.float32) |
|
else: |
|
classes_gt = util_ops.padded_one_hot_encoding( |
|
indices=classes_gt, depth=num_classes, left_pad=0) |
|
masks_gt = read_data.get(fields.InputDataFields.groundtruth_instance_masks) |
|
keypoints_gt = read_data.get(fields.InputDataFields.groundtruth_keypoints) |
|
if (merge_multiple_label_boxes and ( |
|
masks_gt is not None or keypoints_gt is not None)): |
|
raise NotImplementedError('Multi-label support is only for boxes.') |
|
weights_gt = read_data.get( |
|
fields.InputDataFields.groundtruth_weights) |
|
return (image, key, location_gt, classes_gt, masks_gt, keypoints_gt, |
|
weights_gt) |
|
|
|
return zip(*map(extract_images_and_targets, read_data_list)) |
|
|
|
|
|
def _create_losses(input_queue, create_model_fn, train_config): |
|
"""Creates loss function for a DetectionModel. |
|
|
|
Args: |
|
input_queue: BatchQueue object holding enqueued tensor_dicts. |
|
create_model_fn: A function to create the DetectionModel. |
|
train_config: a train_pb2.TrainConfig protobuf. |
|
""" |
|
detection_model = create_model_fn() |
|
(images, _, groundtruth_boxes_list, groundtruth_classes_list, |
|
groundtruth_masks_list, groundtruth_keypoints_list, |
|
groundtruth_weights_list) = get_inputs( |
|
input_queue, |
|
detection_model.num_classes, |
|
train_config.merge_multiple_label_boxes, |
|
train_config.use_multiclass_scores) |
|
|
|
preprocessed_images = [] |
|
true_image_shapes = [] |
|
for image in images: |
|
resized_image, true_image_shape = detection_model.preprocess(image) |
|
preprocessed_images.append(resized_image) |
|
true_image_shapes.append(true_image_shape) |
|
|
|
images = tf.concat(preprocessed_images, 0) |
|
true_image_shapes = tf.concat(true_image_shapes, 0) |
|
|
|
if any(mask is None for mask in groundtruth_masks_list): |
|
groundtruth_masks_list = None |
|
if any(keypoints is None for keypoints in groundtruth_keypoints_list): |
|
groundtruth_keypoints_list = None |
|
|
|
detection_model.provide_groundtruth( |
|
groundtruth_boxes_list, |
|
groundtruth_classes_list, |
|
groundtruth_masks_list, |
|
groundtruth_keypoints_list, |
|
groundtruth_weights_list=groundtruth_weights_list) |
|
prediction_dict = detection_model.predict(images, true_image_shapes) |
|
|
|
losses_dict = detection_model.loss(prediction_dict, true_image_shapes) |
|
for loss_tensor in losses_dict.values(): |
|
tf.losses.add_loss(loss_tensor) |
|
|
|
|
|
def train(create_tensor_dict_fn, |
|
create_model_fn, |
|
train_config, |
|
master, |
|
task, |
|
num_clones, |
|
worker_replicas, |
|
clone_on_cpu, |
|
ps_tasks, |
|
worker_job_name, |
|
is_chief, |
|
train_dir, |
|
graph_hook_fn=None): |
|
"""Training function for detection models. |
|
|
|
Args: |
|
create_tensor_dict_fn: a function to create a tensor input dictionary. |
|
create_model_fn: a function that creates a DetectionModel and generates |
|
losses. |
|
train_config: a train_pb2.TrainConfig protobuf. |
|
master: BNS name of the TensorFlow master to use. |
|
task: The task id of this training instance. |
|
num_clones: The number of clones to run per machine. |
|
worker_replicas: The number of work replicas to train with. |
|
clone_on_cpu: True if clones should be forced to run on CPU. |
|
ps_tasks: Number of parameter server tasks. |
|
worker_job_name: Name of the worker job. |
|
is_chief: Whether this replica is the chief replica. |
|
train_dir: Directory to write checkpoints and training summaries to. |
|
graph_hook_fn: Optional function that is called after the inference graph is |
|
built (before optimization). This is helpful to perform additional changes |
|
to the training graph such as adding FakeQuant ops. The function should |
|
modify the default graph. |
|
|
|
Raises: |
|
ValueError: If both num_clones > 1 and train_config.sync_replicas is true. |
|
""" |
|
|
|
detection_model = create_model_fn() |
|
data_augmentation_options = [ |
|
preprocessor_builder.build(step) |
|
for step in train_config.data_augmentation_options] |
|
|
|
with tf.Graph().as_default(): |
|
|
|
deploy_config = model_deploy.DeploymentConfig( |
|
num_clones=num_clones, |
|
clone_on_cpu=clone_on_cpu, |
|
replica_id=task, |
|
num_replicas=worker_replicas, |
|
num_ps_tasks=ps_tasks, |
|
worker_job_name=worker_job_name) |
|
|
|
|
|
with tf.device(deploy_config.variables_device()): |
|
global_step = slim.create_global_step() |
|
|
|
if num_clones != 1 and train_config.sync_replicas: |
|
raise ValueError('In Synchronous SGD mode num_clones must ', |
|
'be 1. Found num_clones: {}'.format(num_clones)) |
|
batch_size = train_config.batch_size // num_clones |
|
if train_config.sync_replicas: |
|
batch_size //= train_config.replicas_to_aggregate |
|
|
|
with tf.device(deploy_config.inputs_device()): |
|
input_queue = create_input_queue( |
|
batch_size, create_tensor_dict_fn, |
|
train_config.batch_queue_capacity, |
|
train_config.num_batch_queue_threads, |
|
train_config.prefetch_queue_capacity, data_augmentation_options) |
|
|
|
|
|
|
|
|
|
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES)) |
|
global_summaries = set([]) |
|
|
|
model_fn = functools.partial(_create_losses, |
|
create_model_fn=create_model_fn, |
|
train_config=train_config) |
|
clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue]) |
|
first_clone_scope = clones[0].scope |
|
|
|
if graph_hook_fn: |
|
with tf.device(deploy_config.variables_device()): |
|
graph_hook_fn() |
|
|
|
|
|
|
|
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope) |
|
|
|
with tf.device(deploy_config.optimizer_device()): |
|
training_optimizer, optimizer_summary_vars = optimizer_builder.build( |
|
train_config.optimizer) |
|
for var in optimizer_summary_vars: |
|
tf.summary.scalar(var.op.name, var, family='LearningRate') |
|
|
|
sync_optimizer = None |
|
if train_config.sync_replicas: |
|
training_optimizer = tf.train.SyncReplicasOptimizer( |
|
training_optimizer, |
|
replicas_to_aggregate=train_config.replicas_to_aggregate, |
|
total_num_replicas=worker_replicas) |
|
sync_optimizer = training_optimizer |
|
|
|
with tf.device(deploy_config.optimizer_device()): |
|
regularization_losses = (None if train_config.add_regularization_loss |
|
else []) |
|
total_loss, grads_and_vars = model_deploy.optimize_clones( |
|
clones, training_optimizer, |
|
regularization_losses=regularization_losses) |
|
total_loss = tf.check_numerics(total_loss, 'LossTensor is inf or nan.') |
|
|
|
|
|
if train_config.bias_grad_multiplier: |
|
biases_regex_list = ['.*/biases'] |
|
grads_and_vars = variables_helper.multiply_gradients_matching_regex( |
|
grads_and_vars, |
|
biases_regex_list, |
|
multiplier=train_config.bias_grad_multiplier) |
|
|
|
|
|
if train_config.freeze_variables: |
|
grads_and_vars = variables_helper.freeze_gradients_matching_regex( |
|
grads_and_vars, train_config.freeze_variables) |
|
|
|
|
|
if train_config.gradient_clipping_by_norm > 0: |
|
with tf.name_scope('clip_grads'): |
|
grads_and_vars = slim.learning.clip_gradient_norms( |
|
grads_and_vars, train_config.gradient_clipping_by_norm) |
|
|
|
|
|
grad_updates = training_optimizer.apply_gradients(grads_and_vars, |
|
global_step=global_step) |
|
update_ops.append(grad_updates) |
|
update_op = tf.group(*update_ops, name='update_barrier') |
|
with tf.control_dependencies([update_op]): |
|
train_tensor = tf.identity(total_loss, name='train_op') |
|
|
|
|
|
for model_var in slim.get_model_variables(): |
|
global_summaries.add(tf.summary.histogram('ModelVars/' + |
|
model_var.op.name, model_var)) |
|
for loss_tensor in tf.losses.get_losses(): |
|
global_summaries.add(tf.summary.scalar('Losses/' + loss_tensor.op.name, |
|
loss_tensor)) |
|
global_summaries.add( |
|
tf.summary.scalar('Losses/TotalLoss', tf.losses.get_total_loss())) |
|
|
|
|
|
|
|
summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES, |
|
first_clone_scope)) |
|
summaries |= global_summaries |
|
|
|
|
|
summary_op = tf.summary.merge(list(summaries), name='summary_op') |
|
|
|
|
|
session_config = tf.ConfigProto(allow_soft_placement=True, |
|
log_device_placement=False) |
|
|
|
|
|
keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours |
|
saver = tf.train.Saver( |
|
keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours) |
|
|
|
|
|
init_fn = None |
|
if train_config.fine_tune_checkpoint: |
|
if not train_config.fine_tune_checkpoint_type: |
|
|
|
|
|
|
|
if train_config.from_detection_checkpoint: |
|
train_config.fine_tune_checkpoint_type = 'detection' |
|
else: |
|
train_config.fine_tune_checkpoint_type = 'classification' |
|
var_map = detection_model.restore_map( |
|
fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type, |
|
load_all_detection_checkpoint_vars=( |
|
train_config.load_all_detection_checkpoint_vars)) |
|
available_var_map = (variables_helper. |
|
get_variables_available_in_checkpoint( |
|
var_map, train_config.fine_tune_checkpoint, |
|
include_global_step=False)) |
|
init_saver = tf.train.Saver(available_var_map) |
|
def initializer_fn(sess): |
|
init_saver.restore(sess, train_config.fine_tune_checkpoint) |
|
init_fn = initializer_fn |
|
|
|
slim.learning.train( |
|
train_tensor, |
|
logdir=train_dir, |
|
master=master, |
|
is_chief=is_chief, |
|
session_config=session_config, |
|
startup_delay_steps=train_config.startup_delay_steps, |
|
init_fn=init_fn, |
|
summary_op=summary_op, |
|
number_of_steps=( |
|
train_config.num_steps if train_config.num_steps else None), |
|
save_summaries_secs=120, |
|
sync_optimizer=sync_optimizer, |
|
saver=saver) |
|
|