|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Argmax matcher implementation. |
|
|
|
This class takes a similarity matrix and matches columns to rows based on the |
|
maximum value per column. One can specify matched_thresholds and |
|
to prevent columns from matching to rows (generally resulting in a negative |
|
training example) and unmatched_theshold to ignore the match (generally |
|
resulting in neither a positive or negative training example). |
|
|
|
This matcher is used in Fast(er)-RCNN. |
|
|
|
Note: matchers are used in TargetAssigners. There is a create_target_assigner |
|
factory function for popular implementations. |
|
""" |
|
import tensorflow.compat.v1 as tf |
|
|
|
from object_detection.core import matcher |
|
from object_detection.utils import shape_utils |
|
|
|
|
|
class ArgMaxMatcher(matcher.Matcher): |
|
"""Matcher based on highest value. |
|
|
|
This class computes matches from a similarity matrix. Each column is matched |
|
to a single row. |
|
|
|
To support object detection target assignment this class enables setting both |
|
matched_threshold (upper threshold) and unmatched_threshold (lower thresholds) |
|
defining three categories of similarity which define whether examples are |
|
positive, negative, or ignored: |
|
(1) similarity >= matched_threshold: Highest similarity. Matched/Positive! |
|
(2) matched_threshold > similarity >= unmatched_threshold: Medium similarity. |
|
Depending on negatives_lower_than_unmatched, this is either |
|
Unmatched/Negative OR Ignore. |
|
(3) unmatched_threshold > similarity: Lowest similarity. Depending on flag |
|
negatives_lower_than_unmatched, either Unmatched/Negative OR Ignore. |
|
For ignored matches this class sets the values in the Match object to -2. |
|
""" |
|
|
|
def __init__(self, |
|
matched_threshold, |
|
unmatched_threshold=None, |
|
negatives_lower_than_unmatched=True, |
|
force_match_for_each_row=False, |
|
use_matmul_gather=False): |
|
"""Construct ArgMaxMatcher. |
|
|
|
Args: |
|
matched_threshold: Threshold for positive matches. Positive if |
|
sim >= matched_threshold, where sim is the maximum value of the |
|
similarity matrix for a given column. Set to None for no threshold. |
|
unmatched_threshold: Threshold for negative matches. Negative if |
|
sim < unmatched_threshold. Defaults to matched_threshold |
|
when set to None. |
|
negatives_lower_than_unmatched: Boolean which defaults to True. If True |
|
then negative matches are the ones below the unmatched_threshold, |
|
whereas ignored matches are in between the matched and umatched |
|
threshold. If False, then negative matches are in between the matched |
|
and unmatched threshold, and everything lower than unmatched is ignored. |
|
force_match_for_each_row: If True, ensures that each row is matched to |
|
at least one column (which is not guaranteed otherwise if the |
|
matched_threshold is high). Defaults to False. See |
|
argmax_matcher_test.testMatcherForceMatch() for an example. |
|
use_matmul_gather: Force constructed match objects to use matrix |
|
multiplication based gather instead of standard tf.gather. |
|
(Default: False). |
|
|
|
Raises: |
|
ValueError: if unmatched_threshold is set but matched_threshold is not set |
|
or if unmatched_threshold > matched_threshold. |
|
""" |
|
super(ArgMaxMatcher, self).__init__(use_matmul_gather=use_matmul_gather) |
|
if (matched_threshold is None) and (unmatched_threshold is not None): |
|
raise ValueError('Need to also define matched_threshold when' |
|
'unmatched_threshold is defined') |
|
self._matched_threshold = matched_threshold |
|
if unmatched_threshold is None: |
|
self._unmatched_threshold = matched_threshold |
|
else: |
|
if unmatched_threshold > matched_threshold: |
|
raise ValueError('unmatched_threshold needs to be smaller or equal' |
|
'to matched_threshold') |
|
self._unmatched_threshold = unmatched_threshold |
|
if not negatives_lower_than_unmatched: |
|
if self._unmatched_threshold == self._matched_threshold: |
|
raise ValueError('When negatives are in between matched and ' |
|
'unmatched thresholds, these cannot be of equal ' |
|
'value. matched: {}, unmatched: {}'.format( |
|
self._matched_threshold, |
|
self._unmatched_threshold)) |
|
self._force_match_for_each_row = force_match_for_each_row |
|
self._negatives_lower_than_unmatched = negatives_lower_than_unmatched |
|
|
|
def _match(self, similarity_matrix, valid_rows): |
|
"""Tries to match each column of the similarity matrix to a row. |
|
|
|
Args: |
|
similarity_matrix: tensor of shape [N, M] representing any similarity |
|
metric. |
|
valid_rows: a boolean tensor of shape [N] indicating valid rows. |
|
|
|
Returns: |
|
Match object with corresponding matches for each of M columns. |
|
""" |
|
|
|
def _match_when_rows_are_empty(): |
|
"""Performs matching when the rows of similarity matrix are empty. |
|
|
|
When the rows are empty, all detections are false positives. So we return |
|
a tensor of -1's to indicate that the columns do not match to any rows. |
|
|
|
Returns: |
|
matches: int32 tensor indicating the row each column matches to. |
|
""" |
|
similarity_matrix_shape = shape_utils.combined_static_and_dynamic_shape( |
|
similarity_matrix) |
|
return -1 * tf.ones([similarity_matrix_shape[1]], dtype=tf.int32) |
|
|
|
def _match_when_rows_are_non_empty(): |
|
"""Performs matching when the rows of similarity matrix are non empty. |
|
|
|
Returns: |
|
matches: int32 tensor indicating the row each column matches to. |
|
""" |
|
|
|
matches = tf.argmax(similarity_matrix, 0, output_type=tf.int32) |
|
|
|
|
|
if self._matched_threshold is not None: |
|
|
|
matched_vals = tf.reduce_max(similarity_matrix, 0) |
|
below_unmatched_threshold = tf.greater(self._unmatched_threshold, |
|
matched_vals) |
|
between_thresholds = tf.logical_and( |
|
tf.greater_equal(matched_vals, self._unmatched_threshold), |
|
tf.greater(self._matched_threshold, matched_vals)) |
|
|
|
if self._negatives_lower_than_unmatched: |
|
matches = self._set_values_using_indicator(matches, |
|
below_unmatched_threshold, |
|
-1) |
|
matches = self._set_values_using_indicator(matches, |
|
between_thresholds, |
|
-2) |
|
else: |
|
matches = self._set_values_using_indicator(matches, |
|
below_unmatched_threshold, |
|
-2) |
|
matches = self._set_values_using_indicator(matches, |
|
between_thresholds, |
|
-1) |
|
|
|
if self._force_match_for_each_row: |
|
similarity_matrix_shape = shape_utils.combined_static_and_dynamic_shape( |
|
similarity_matrix) |
|
force_match_column_ids = tf.argmax(similarity_matrix, 1, |
|
output_type=tf.int32) |
|
force_match_column_indicators = ( |
|
tf.one_hot( |
|
force_match_column_ids, depth=similarity_matrix_shape[1]) * |
|
tf.cast(tf.expand_dims(valid_rows, axis=-1), dtype=tf.float32)) |
|
force_match_row_ids = tf.argmax(force_match_column_indicators, 0, |
|
output_type=tf.int32) |
|
force_match_column_mask = tf.cast( |
|
tf.reduce_max(force_match_column_indicators, 0), tf.bool) |
|
final_matches = tf.where(force_match_column_mask, |
|
force_match_row_ids, matches) |
|
return final_matches |
|
else: |
|
return matches |
|
|
|
if similarity_matrix.shape.is_fully_defined(): |
|
if shape_utils.get_dim_as_int(similarity_matrix.shape[0]) == 0: |
|
return _match_when_rows_are_empty() |
|
else: |
|
return _match_when_rows_are_non_empty() |
|
else: |
|
return tf.cond( |
|
tf.greater(tf.shape(similarity_matrix)[0], 0), |
|
_match_when_rows_are_non_empty, _match_when_rows_are_empty) |
|
|
|
def _set_values_using_indicator(self, x, indicator, val): |
|
"""Set the indicated fields of x to val. |
|
|
|
Args: |
|
x: tensor. |
|
indicator: boolean with same shape as x. |
|
val: scalar with value to set. |
|
|
|
Returns: |
|
modified tensor. |
|
""" |
|
indicator = tf.cast(indicator, x.dtype) |
|
return tf.add(tf.multiply(x, 1 - indicator), val * indicator) |
|
|