NCTCMumbai's picture
Upload 2583 files
97b6013 verified
syntax = "proto2";
package object_detection.protos;
import "object_detection/protos/image_resizer.proto";
// Configuration proto for defining input readers that generate Object Detection
// Examples from input sources. Input readers are expected to generate a
// dictionary of tensors, with the following fields populated:
//
// 'image': an [image_height, image_width, channels] image tensor that detection
// will be run on.
// 'groundtruth_classes': a [num_boxes] int32 tensor storing the class
// labels of detected boxes in the image.
// 'groundtruth_boxes': a [num_boxes, 4] float tensor storing the coordinates of
// detected boxes in the image.
// 'groundtruth_instance_masks': (Optional), a [num_boxes, image_height,
// image_width] float tensor storing binary mask of the objects in boxes.
// Instance mask format. Note that PNG masks are much more space efficient.
enum InstanceMaskType {
DEFAULT = 0; // Default implementation, currently NUMERICAL_MASKS
NUMERICAL_MASKS = 1; // [num_masks, H, W] float32 binary masks.
PNG_MASKS = 2; // Encoded PNG masks.
}
// Input type format: whether inputs are TfExamples or TfSequenceExamples.
enum InputType {
INPUT_DEFAULT = 0; // Default implementation, currently TF_EXAMPLE
TF_EXAMPLE = 1; // TfExample input
TF_SEQUENCE_EXAMPLE = 2; // TfSequenceExample Input
}
// Next id: 31
message InputReader {
// Name of input reader. Typically used to describe the dataset that is read
// by this input reader.
optional string name = 23 [default = ""];
// Path to StringIntLabelMap pbtxt file specifying the mapping from string
// labels to integer ids.
optional string label_map_path = 1 [default = ""];
// Whether data should be processed in the order they are read in, or
// shuffled randomly.
optional bool shuffle = 2 [default = true];
// Buffer size to be used when shuffling.
optional uint32 shuffle_buffer_size = 11 [default = 2048];
// Buffer size to be used when shuffling file names.
optional uint32 filenames_shuffle_buffer_size = 12 [default = 100];
// The number of times a data source is read. If set to zero, the data source
// will be reused indefinitely.
optional uint32 num_epochs = 5 [default = 0];
// Integer representing how often an example should be sampled. To feed
// only 1/3 of your data into your model, set `sample_1_of_n_examples` to 3.
// This is particularly useful for evaluation, where you might not prefer to
// evaluate all of your samples.
optional uint32 sample_1_of_n_examples = 22 [default = 1];
// Number of file shards to read in parallel.
optional uint32 num_readers = 6 [default = 64];
// Number of batches to produce in parallel. If this is run on a 2x2 TPU set
// this to 8.
optional uint32 num_parallel_batches = 19 [default = 8];
// Number of batches to prefetch. Prefetch decouples input pipeline and
// model so they can be pipelined resulting in higher throughput. Set this
// to a small constant and increment linearly until the improvements become
// marginal or you exceed your cpu memory budget. Setting this to -1,
// automatically tunes this value for you.
optional int32 num_prefetch_batches = 20 [default = 2];
// Maximum number of records to keep in reader queue.
optional uint32 queue_capacity = 3 [default = 2000, deprecated = true];
// Minimum number of records to keep in reader queue. A large value is needed
// to generate a good random shuffle.
optional uint32 min_after_dequeue = 4 [default = 1000, deprecated = true];
// Number of records to read from each reader at once.
optional uint32 read_block_length = 15 [default = 32];
// Number of decoded records to prefetch before batching.
optional uint32 prefetch_size = 13 [default = 512, deprecated = true];
// Number of parallel decode ops to apply.
optional uint32 num_parallel_map_calls = 14 [default = 64, deprecated = true];
// If positive, TfExampleDecoder will try to decode rasters of additional
// channels from tf.Examples.
optional int32 num_additional_channels = 18 [default = 0];
// Number of groundtruth keypoints per object.
optional uint32 num_keypoints = 16 [default = 0];
// Keypoint weights. These weights can be used to apply per-keypoint loss
// multipliers. The size of this field should agree with `num_keypoints`.
repeated float keypoint_type_weight = 26;
// Maximum number of boxes to pad to during training / evaluation.
// Set this to at least the maximum amount of boxes in the input data,
// otherwise some groundtruth boxes may be clipped.
optional int32 max_number_of_boxes = 21 [default = 100];
// Whether to load multiclass scores from the dataset.
optional bool load_multiclass_scores = 24 [default = false];
// Whether to load context features from the dataset.
optional bool load_context_features = 25 [default = false];
// Whether to load groundtruth instance masks.
optional bool load_instance_masks = 7 [default = false];
// Type of instance mask.
optional InstanceMaskType mask_type = 10 [default = NUMERICAL_MASKS];
// Whether to use the display name when decoding examples. This is only used
// when mapping class text strings to integers.
optional bool use_display_name = 17 [default = false];
// Whether to include the source_id string in the input features.
optional bool include_source_id = 27 [default = false];
// Whether input data type is tf.Examples or tf.SequenceExamples
optional InputType input_type = 30 [default = TF_EXAMPLE];
oneof input_reader {
TFRecordInputReader tf_record_input_reader = 8;
ExternalInputReader external_input_reader = 9;
}
// Expand labels to ancestors or descendants in the hierarchy for
// for positive and negative labels, respectively.
optional bool expand_labels_hierarchy = 29 [default = false];
}
// An input reader that reads TF Example or TF Sequence Example protos from
// local TFRecord files.
message TFRecordInputReader {
// Path(s) to `TFRecordFile`s.
repeated string input_path = 1;
}
// An externally defined input reader. Users may define an extension to this
// proto to interface their own input readers.
message ExternalInputReader {
extensions 1 to 999;
}