|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for object_detection.utils.ops.""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import six |
|
from six.moves import range |
|
import tensorflow.compat.v1 as tf |
|
import tf_slim as slim |
|
from object_detection.core import standard_fields as fields |
|
from object_detection.utils import ops |
|
from object_detection.utils import test_case |
|
|
|
|
|
class NormalizedToImageCoordinatesTest(test_case.TestCase): |
|
|
|
def test_normalized_to_image_coordinates(self): |
|
normalized_boxes_np = np.array([[[0.0, 0.0, 1.0, 1.0]], |
|
[[0.5, 0.5, 1.0, 1.0]]]) |
|
|
|
def graph_fn(normalized_boxes): |
|
image_shape = tf.convert_to_tensor([1, 4, 4, 3], dtype=tf.int32) |
|
absolute_boxes = ops.normalized_to_image_coordinates( |
|
normalized_boxes, image_shape, parallel_iterations=2) |
|
return absolute_boxes |
|
|
|
expected_boxes = np.array([[[0, 0, 4, 4]], |
|
[[2, 2, 4, 4]]]) |
|
|
|
absolute_boxes = self.execute(graph_fn, [normalized_boxes_np]) |
|
self.assertAllEqual(absolute_boxes, expected_boxes) |
|
|
|
|
|
class ReduceSumTrailingDimensions(test_case.TestCase): |
|
|
|
def test_reduce_sum_trailing_dimensions(self): |
|
|
|
def graph_fn(input_tensor): |
|
reduced_tensor = ops.reduce_sum_trailing_dimensions(input_tensor, ndims=2) |
|
return reduced_tensor |
|
|
|
reduced_np = self.execute(graph_fn, [np.ones((2, 2, 2), np.float32)]) |
|
self.assertAllClose(reduced_np, 2 * np.ones((2, 2), np.float32)) |
|
|
|
|
|
class MeshgridTest(test_case.TestCase): |
|
|
|
def test_meshgrid_numpy_comparison(self): |
|
"""Tests meshgrid op with vectors, for which it should match numpy.""" |
|
|
|
x = np.arange(4) |
|
y = np.arange(6) |
|
|
|
def graph_fn(): |
|
xgrid, ygrid = ops.meshgrid(x, y) |
|
return xgrid, ygrid |
|
|
|
exp_xgrid, exp_ygrid = np.meshgrid(x, y) |
|
xgrid_output, ygrid_output = self.execute(graph_fn, []) |
|
self.assertAllEqual(xgrid_output, exp_xgrid) |
|
self.assertAllEqual(ygrid_output, exp_ygrid) |
|
|
|
def test_meshgrid_multidimensional(self): |
|
np.random.seed(18) |
|
x = np.random.rand(4, 1, 2).astype(np.float32) |
|
y = np.random.rand(2, 3).astype(np.float32) |
|
|
|
grid_shape = list(y.shape) + list(x.shape) |
|
|
|
def graph_fn(): |
|
xgrid, ygrid = ops.meshgrid(x, y) |
|
self.assertEqual(xgrid.get_shape().as_list(), grid_shape) |
|
self.assertEqual(ygrid.get_shape().as_list(), grid_shape) |
|
return xgrid, ygrid |
|
|
|
xgrid_output, ygrid_output = self.execute(graph_fn, []) |
|
|
|
|
|
self.assertEqual(xgrid_output.shape, tuple(grid_shape)) |
|
self.assertEqual(ygrid_output.shape, tuple(grid_shape)) |
|
|
|
|
|
test_elements = [((3, 0, 0), (1, 2)), |
|
((2, 0, 1), (0, 0)), |
|
((0, 0, 0), (1, 1))] |
|
for xind, yind in test_elements: |
|
|
|
|
|
self.assertEqual(xgrid_output[yind + xind], x[xind]) |
|
self.assertEqual(ygrid_output[yind + xind], y[yind]) |
|
|
|
|
|
class OpsTestFixedPadding(test_case.TestCase): |
|
|
|
def test_3x3_kernel(self): |
|
|
|
def graph_fn(): |
|
tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) |
|
padded_tensor = ops.fixed_padding(tensor, 3) |
|
return padded_tensor |
|
|
|
padded_tensor_out = self.execute(graph_fn, []) |
|
self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape) |
|
|
|
def test_5x5_kernel(self): |
|
|
|
def graph_fn(): |
|
tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) |
|
padded_tensor = ops.fixed_padding(tensor, 5) |
|
return padded_tensor |
|
|
|
padded_tensor_out = self.execute(graph_fn, []) |
|
self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape) |
|
|
|
def test_3x3_atrous_kernel(self): |
|
|
|
def graph_fn(): |
|
tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) |
|
padded_tensor = ops.fixed_padding(tensor, 3, 2) |
|
return padded_tensor |
|
|
|
padded_tensor_out = self.execute(graph_fn, []) |
|
self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape) |
|
|
|
|
|
class OpsTestPadToMultiple(test_case.TestCase): |
|
|
|
def test_zero_padding(self): |
|
|
|
def graph_fn(): |
|
tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) |
|
padded_tensor = ops.pad_to_multiple(tensor, 1) |
|
return padded_tensor |
|
|
|
padded_tensor_out = self.execute(graph_fn, []) |
|
self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape) |
|
|
|
def test_no_padding(self): |
|
|
|
def graph_fn(): |
|
tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) |
|
padded_tensor = ops.pad_to_multiple(tensor, 2) |
|
return padded_tensor |
|
|
|
padded_tensor_out = self.execute(graph_fn, []) |
|
self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape) |
|
|
|
def test_non_square_padding(self): |
|
|
|
def graph_fn(): |
|
tensor = tf.constant([[[[0.], [0.]]]]) |
|
padded_tensor = ops.pad_to_multiple(tensor, 2) |
|
return padded_tensor |
|
|
|
padded_tensor_out = self.execute(graph_fn, []) |
|
self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape) |
|
|
|
def test_padding(self): |
|
|
|
def graph_fn(): |
|
tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) |
|
padded_tensor = ops.pad_to_multiple(tensor, 4) |
|
return padded_tensor |
|
|
|
padded_tensor_out = self.execute(graph_fn, []) |
|
self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape) |
|
|
|
|
|
class OpsTestPaddedOneHotEncoding(test_case.TestCase): |
|
|
|
def test_correct_one_hot_tensor_with_no_pad(self): |
|
|
|
def graph_fn(): |
|
indices = tf.constant([1, 2, 3, 5]) |
|
one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=0) |
|
return one_hot_tensor |
|
|
|
expected_tensor = np.array([[0, 1, 0, 0, 0, 0], |
|
[0, 0, 1, 0, 0, 0], |
|
[0, 0, 0, 1, 0, 0], |
|
[0, 0, 0, 0, 0, 1]], np.float32) |
|
|
|
out_one_hot_tensor = self.execute(graph_fn, []) |
|
self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10, |
|
atol=1e-10) |
|
|
|
def test_correct_one_hot_tensor_with_pad_one(self): |
|
|
|
def graph_fn(): |
|
indices = tf.constant([1, 2, 3, 5]) |
|
one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=1) |
|
return one_hot_tensor |
|
|
|
expected_tensor = np.array([[0, 0, 1, 0, 0, 0, 0], |
|
[0, 0, 0, 1, 0, 0, 0], |
|
[0, 0, 0, 0, 1, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 1]], np.float32) |
|
out_one_hot_tensor = self.execute(graph_fn, []) |
|
self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10, |
|
atol=1e-10) |
|
|
|
def test_correct_one_hot_tensor_with_pad_three(self): |
|
|
|
def graph_fn(): |
|
indices = tf.constant([1, 2, 3, 5]) |
|
one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=3) |
|
return one_hot_tensor |
|
|
|
expected_tensor = np.array([[0, 0, 0, 0, 1, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 1, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 1, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0, 0, 1]], np.float32) |
|
|
|
out_one_hot_tensor = self.execute(graph_fn, []) |
|
self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10, |
|
atol=1e-10) |
|
|
|
def test_correct_padded_one_hot_tensor_with_empty_indices(self): |
|
|
|
depth = 6 |
|
pad = 2 |
|
|
|
def graph_fn(): |
|
indices = tf.constant([]) |
|
one_hot_tensor = ops.padded_one_hot_encoding( |
|
indices, depth=depth, left_pad=pad) |
|
return one_hot_tensor |
|
|
|
expected_tensor = np.zeros((0, depth + pad)) |
|
out_one_hot_tensor = self.execute(graph_fn, []) |
|
self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10, |
|
atol=1e-10) |
|
|
|
def test_return_none_on_zero_depth(self): |
|
indices = tf.constant([1, 2, 3, 4, 5]) |
|
one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=0, left_pad=2) |
|
self.assertEqual(one_hot_tensor, None) |
|
|
|
def test_raise_value_error_on_rank_two_input(self): |
|
indices = tf.constant(1.0, shape=(2, 3)) |
|
with self.assertRaises(ValueError): |
|
ops.padded_one_hot_encoding(indices, depth=6, left_pad=2) |
|
|
|
def test_raise_value_error_on_negative_pad(self): |
|
indices = tf.constant(1.0, shape=(2, 3)) |
|
with self.assertRaises(ValueError): |
|
ops.padded_one_hot_encoding(indices, depth=6, left_pad=-1) |
|
|
|
def test_raise_value_error_on_float_pad(self): |
|
indices = tf.constant(1.0, shape=(2, 3)) |
|
with self.assertRaises(ValueError): |
|
ops.padded_one_hot_encoding(indices, depth=6, left_pad=0.1) |
|
|
|
def test_raise_value_error_on_float_depth(self): |
|
indices = tf.constant(1.0, shape=(2, 3)) |
|
with self.assertRaises(ValueError): |
|
ops.padded_one_hot_encoding(indices, depth=0.1, left_pad=2) |
|
|
|
|
|
class OpsDenseToSparseBoxesTest(test_case.TestCase): |
|
|
|
def test_return_all_boxes_when_all_input_boxes_are_valid(self): |
|
num_classes = 4 |
|
num_valid_boxes = 3 |
|
code_size = 4 |
|
|
|
def graph_fn(dense_location, dense_num_boxes): |
|
box_locations, box_classes = ops.dense_to_sparse_boxes( |
|
dense_location, dense_num_boxes, num_classes) |
|
return box_locations, box_classes |
|
|
|
dense_location_np = np.random.uniform(size=[num_valid_boxes, code_size]) |
|
dense_num_boxes_np = np.array([1, 0, 0, 2], dtype=np.int32) |
|
|
|
expected_box_locations = dense_location_np |
|
expected_box_classses = np.array([0, 3, 3]) |
|
|
|
|
|
box_locations, box_classes = self.execute_cpu( |
|
graph_fn, [dense_location_np, dense_num_boxes_np]) |
|
|
|
self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6, |
|
atol=1e-6) |
|
self.assertAllEqual(box_classes, expected_box_classses) |
|
|
|
def test_return_only_valid_boxes_when_input_contains_invalid_boxes(self): |
|
num_classes = 4 |
|
num_valid_boxes = 3 |
|
num_boxes = 10 |
|
code_size = 4 |
|
|
|
def graph_fn(dense_location, dense_num_boxes): |
|
box_locations, box_classes = ops.dense_to_sparse_boxes( |
|
dense_location, dense_num_boxes, num_classes) |
|
return box_locations, box_classes |
|
|
|
dense_location_np = np.random.uniform(size=[num_boxes, code_size]) |
|
dense_num_boxes_np = np.array([1, 0, 0, 2], dtype=np.int32) |
|
|
|
expected_box_locations = dense_location_np[:num_valid_boxes] |
|
expected_box_classses = np.array([0, 3, 3]) |
|
|
|
|
|
box_locations, box_classes = self.execute_cpu( |
|
graph_fn, [dense_location_np, dense_num_boxes_np]) |
|
|
|
self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6, |
|
atol=1e-6) |
|
self.assertAllEqual(box_classes, expected_box_classses) |
|
|
|
|
|
class OpsTestIndicesToDenseVector(test_case.TestCase): |
|
|
|
def test_indices_to_dense_vector(self): |
|
size = 10000 |
|
num_indices = np.random.randint(size) |
|
rand_indices = np.random.permutation(np.arange(size))[0:num_indices] |
|
|
|
expected_output = np.zeros(size, dtype=np.float32) |
|
expected_output[rand_indices] = 1. |
|
|
|
def graph_fn(): |
|
tf_rand_indices = tf.constant(rand_indices) |
|
indicator = ops.indices_to_dense_vector(tf_rand_indices, size) |
|
return indicator |
|
|
|
output = self.execute(graph_fn, []) |
|
self.assertAllEqual(output, expected_output) |
|
self.assertEqual(output.dtype, expected_output.dtype) |
|
|
|
def test_indices_to_dense_vector_size_at_inference(self): |
|
size = 5000 |
|
num_indices = 250 |
|
all_indices = np.arange(size) |
|
rand_indices = np.random.permutation(all_indices)[0:num_indices] |
|
|
|
expected_output = np.zeros(size, dtype=np.float32) |
|
expected_output[rand_indices] = 1. |
|
|
|
def graph_fn(tf_all_indices): |
|
tf_rand_indices = tf.constant(rand_indices) |
|
indicator = ops.indices_to_dense_vector(tf_rand_indices, |
|
tf.shape(tf_all_indices)[0]) |
|
return indicator |
|
|
|
output = self.execute(graph_fn, [all_indices]) |
|
self.assertAllEqual(output, expected_output) |
|
self.assertEqual(output.dtype, expected_output.dtype) |
|
|
|
def test_indices_to_dense_vector_int(self): |
|
size = 500 |
|
num_indices = 25 |
|
rand_indices = np.random.permutation(np.arange(size))[0:num_indices] |
|
|
|
expected_output = np.zeros(size, dtype=np.int64) |
|
expected_output[rand_indices] = 1 |
|
|
|
def graph_fn(): |
|
tf_rand_indices = tf.constant(rand_indices) |
|
indicator = ops.indices_to_dense_vector( |
|
tf_rand_indices, size, 1, dtype=tf.int64) |
|
return indicator |
|
|
|
output = self.execute(graph_fn, []) |
|
self.assertAllEqual(output, expected_output) |
|
self.assertEqual(output.dtype, expected_output.dtype) |
|
|
|
def test_indices_to_dense_vector_custom_values(self): |
|
size = 100 |
|
num_indices = 10 |
|
rand_indices = np.random.permutation(np.arange(size))[0:num_indices] |
|
indices_value = np.random.rand(1) |
|
default_value = np.random.rand(1) |
|
|
|
expected_output = np.float32(np.ones(size) * default_value) |
|
expected_output[rand_indices] = indices_value |
|
|
|
def graph_fn(): |
|
tf_rand_indices = tf.constant(rand_indices) |
|
indicator = ops.indices_to_dense_vector( |
|
tf_rand_indices, |
|
size, |
|
indices_value=indices_value, |
|
default_value=default_value) |
|
return indicator |
|
|
|
output = self.execute(graph_fn, []) |
|
self.assertAllClose(output, expected_output) |
|
self.assertEqual(output.dtype, expected_output.dtype) |
|
|
|
def test_indices_to_dense_vector_all_indices_as_input(self): |
|
size = 500 |
|
num_indices = 500 |
|
rand_indices = np.random.permutation(np.arange(size))[0:num_indices] |
|
|
|
expected_output = np.ones(size, dtype=np.float32) |
|
|
|
def graph_fn(): |
|
tf_rand_indices = tf.constant(rand_indices) |
|
indicator = ops.indices_to_dense_vector(tf_rand_indices, size) |
|
return indicator |
|
|
|
output = self.execute(graph_fn, []) |
|
self.assertAllEqual(output, expected_output) |
|
self.assertEqual(output.dtype, expected_output.dtype) |
|
|
|
def test_indices_to_dense_vector_empty_indices_as_input(self): |
|
size = 500 |
|
rand_indices = [] |
|
|
|
expected_output = np.zeros(size, dtype=np.float32) |
|
|
|
def graph_fn(): |
|
tf_rand_indices = tf.constant(rand_indices) |
|
indicator = ops.indices_to_dense_vector(tf_rand_indices, size) |
|
return indicator |
|
|
|
output = self.execute(graph_fn, []) |
|
self.assertAllEqual(output, expected_output) |
|
self.assertEqual(output.dtype, expected_output.dtype) |
|
|
|
|
|
class GroundtruthFilterTest(test_case.TestCase): |
|
|
|
def test_filter_groundtruth(self): |
|
|
|
def graph_fn(input_image, input_boxes, input_classes, input_is_crowd, |
|
input_area, input_difficult, input_label_types, |
|
input_confidences, valid_indices): |
|
input_tensors = { |
|
fields.InputDataFields.image: input_image, |
|
fields.InputDataFields.groundtruth_boxes: input_boxes, |
|
fields.InputDataFields.groundtruth_classes: input_classes, |
|
fields.InputDataFields.groundtruth_is_crowd: input_is_crowd, |
|
fields.InputDataFields.groundtruth_area: input_area, |
|
fields.InputDataFields.groundtruth_difficult: input_difficult, |
|
fields.InputDataFields.groundtruth_label_types: input_label_types, |
|
fields.InputDataFields.groundtruth_confidences: input_confidences, |
|
} |
|
|
|
output_tensors = ops.retain_groundtruth(input_tensors, valid_indices) |
|
return output_tensors |
|
|
|
input_image = np.random.rand(224, 224, 3) |
|
input_boxes = np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], |
|
dtype=np.float32) |
|
input_classes = np.array([1, 2], dtype=np.int32) |
|
input_is_crowd = np.array([False, True], dtype=np.bool) |
|
input_area = np.array([32, 48], dtype=np.float32) |
|
input_difficult = np.array([True, False], dtype=np.bool) |
|
input_label_types = np.array(['APPROPRIATE', 'INCORRECT'], |
|
dtype=np.string_) |
|
input_confidences = np.array([0.99, 0.5], dtype=np.float32) |
|
valid_indices = np.array([0], dtype=np.int32) |
|
|
|
|
|
output_tensors = self.execute_cpu( |
|
graph_fn, |
|
[input_image, input_boxes, input_classes, input_is_crowd, input_area, |
|
input_difficult, input_label_types, input_confidences, valid_indices] |
|
) |
|
|
|
expected_tensors = { |
|
fields.InputDataFields.image: input_image, |
|
fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], |
|
fields.InputDataFields.groundtruth_classes: [1], |
|
fields.InputDataFields.groundtruth_is_crowd: [False], |
|
fields.InputDataFields.groundtruth_area: [32], |
|
fields.InputDataFields.groundtruth_difficult: [True], |
|
fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')], |
|
fields.InputDataFields.groundtruth_confidences: [0.99], |
|
} |
|
for key in [fields.InputDataFields.image, |
|
fields.InputDataFields.groundtruth_boxes, |
|
fields.InputDataFields.groundtruth_area, |
|
fields.InputDataFields.groundtruth_confidences]: |
|
self.assertAllClose(expected_tensors[key], output_tensors[key]) |
|
|
|
for key in [fields.InputDataFields.groundtruth_classes, |
|
fields.InputDataFields.groundtruth_is_crowd, |
|
fields.InputDataFields.groundtruth_label_types]: |
|
self.assertAllEqual(expected_tensors[key], output_tensors[key]) |
|
|
|
def test_filter_with_missing_fields(self): |
|
|
|
input_boxes = np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], |
|
dtype=np.float) |
|
input_classes = np.array([1, 2], dtype=np.int32) |
|
valid_indices = np.array([0], dtype=np.int32) |
|
|
|
expected_tensors = { |
|
fields.InputDataFields.groundtruth_boxes: |
|
[[0.2, 0.4, 0.1, 0.8]], |
|
fields.InputDataFields.groundtruth_classes: |
|
[1] |
|
} |
|
|
|
def graph_fn(input_boxes, input_classes, valid_indices): |
|
input_tensors = { |
|
fields.InputDataFields.groundtruth_boxes: input_boxes, |
|
fields.InputDataFields.groundtruth_classes: input_classes |
|
} |
|
output_tensors = ops.retain_groundtruth(input_tensors, valid_indices) |
|
return output_tensors |
|
|
|
output_tensors = self.execute(graph_fn, [input_boxes, input_classes, |
|
valid_indices]) |
|
|
|
for key in [fields.InputDataFields.groundtruth_boxes]: |
|
self.assertAllClose(expected_tensors[key], output_tensors[key]) |
|
for key in [fields.InputDataFields.groundtruth_classes]: |
|
self.assertAllEqual(expected_tensors[key], output_tensors[key]) |
|
|
|
def test_filter_with_empty_fields(self): |
|
|
|
def graph_fn(input_boxes, input_classes, input_is_crowd, input_area, |
|
input_difficult, input_confidences, valid_indices): |
|
input_tensors = { |
|
fields.InputDataFields.groundtruth_boxes: input_boxes, |
|
fields.InputDataFields.groundtruth_classes: input_classes, |
|
fields.InputDataFields.groundtruth_is_crowd: input_is_crowd, |
|
fields.InputDataFields.groundtruth_area: input_area, |
|
fields.InputDataFields.groundtruth_difficult: input_difficult, |
|
fields.InputDataFields.groundtruth_confidences: input_confidences, |
|
} |
|
output_tensors = ops.retain_groundtruth(input_tensors, valid_indices) |
|
return output_tensors |
|
|
|
input_boxes = np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], |
|
dtype=np.float) |
|
input_classes = np.array([1, 2], dtype=np.int32) |
|
input_is_crowd = np.array([False, True], dtype=np.bool) |
|
input_area = np.array([], dtype=np.float32) |
|
input_difficult = np.array([], dtype=np.float32) |
|
input_confidences = np.array([0.99, 0.5], dtype=np.float32) |
|
valid_indices = np.array([0], dtype=np.int32) |
|
|
|
expected_tensors = { |
|
fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], |
|
fields.InputDataFields.groundtruth_classes: [1], |
|
fields.InputDataFields.groundtruth_is_crowd: [False], |
|
fields.InputDataFields.groundtruth_area: [], |
|
fields.InputDataFields.groundtruth_difficult: [], |
|
fields.InputDataFields.groundtruth_confidences: [0.99], |
|
} |
|
output_tensors = self.execute(graph_fn, [ |
|
input_boxes, input_classes, input_is_crowd, input_area, |
|
input_difficult, input_confidences, valid_indices]) |
|
|
|
for key in [fields.InputDataFields.groundtruth_boxes, |
|
fields.InputDataFields.groundtruth_area, |
|
fields.InputDataFields.groundtruth_confidences]: |
|
self.assertAllClose(expected_tensors[key], output_tensors[key]) |
|
for key in [fields.InputDataFields.groundtruth_classes, |
|
fields.InputDataFields.groundtruth_is_crowd]: |
|
self.assertAllEqual(expected_tensors[key], output_tensors[key]) |
|
|
|
def test_filter_with_empty_groundtruth_boxes(self): |
|
|
|
def graph_fn(input_boxes, input_classes, input_is_crowd, input_area, |
|
input_difficult, input_confidences, valid_indices): |
|
input_tensors = { |
|
fields.InputDataFields.groundtruth_boxes: input_boxes, |
|
fields.InputDataFields.groundtruth_classes: input_classes, |
|
fields.InputDataFields.groundtruth_is_crowd: input_is_crowd, |
|
fields.InputDataFields.groundtruth_area: input_area, |
|
fields.InputDataFields.groundtruth_difficult: input_difficult, |
|
fields.InputDataFields.groundtruth_confidences: input_confidences, |
|
} |
|
output_tensors = ops.retain_groundtruth(input_tensors, valid_indices) |
|
return output_tensors |
|
|
|
input_boxes = np.array([], dtype=np.float).reshape(0, 4) |
|
input_classes = np.array([], dtype=np.int32) |
|
input_is_crowd = np.array([], dtype=np.bool) |
|
input_area = np.array([], dtype=np.float32) |
|
input_difficult = np.array([], dtype=np.float32) |
|
input_confidences = np.array([], dtype=np.float32) |
|
valid_indices = np.array([], dtype=np.int32) |
|
|
|
output_tensors = self.execute(graph_fn, [input_boxes, input_classes, |
|
input_is_crowd, input_area, |
|
input_difficult, |
|
input_confidences, |
|
valid_indices]) |
|
for key in output_tensors: |
|
if key == fields.InputDataFields.groundtruth_boxes: |
|
self.assertAllEqual([0, 4], output_tensors[key].shape) |
|
else: |
|
self.assertAllEqual([0], output_tensors[key].shape) |
|
|
|
|
|
class RetainGroundTruthWithPositiveClasses(test_case.TestCase): |
|
|
|
def test_filter_groundtruth_with_positive_classes(self): |
|
|
|
def graph_fn(input_image, input_boxes, input_classes, input_is_crowd, |
|
input_area, input_difficult, input_label_types, |
|
input_confidences): |
|
input_tensors = { |
|
fields.InputDataFields.image: input_image, |
|
fields.InputDataFields.groundtruth_boxes: input_boxes, |
|
fields.InputDataFields.groundtruth_classes: input_classes, |
|
fields.InputDataFields.groundtruth_is_crowd: input_is_crowd, |
|
fields.InputDataFields.groundtruth_area: input_area, |
|
fields.InputDataFields.groundtruth_difficult: input_difficult, |
|
fields.InputDataFields.groundtruth_label_types: input_label_types, |
|
fields.InputDataFields.groundtruth_confidences: input_confidences, |
|
} |
|
output_tensors = ops.retain_groundtruth_with_positive_classes( |
|
input_tensors) |
|
return output_tensors |
|
|
|
input_image = np.random.rand(224, 224, 3) |
|
input_boxes = np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], |
|
dtype=np.float) |
|
input_classes = np.array([1, 0], dtype=np.int32) |
|
input_is_crowd = np.array([False, True], dtype=np.bool) |
|
input_area = np.array([32, 48], dtype=np.float32) |
|
input_difficult = np.array([True, False], dtype=np.bool) |
|
input_label_types = np.array(['APPROPRIATE', 'INCORRECT'], |
|
dtype=np.string_) |
|
input_confidences = np.array([0.99, 0.5], dtype=np.float32) |
|
|
|
expected_tensors = { |
|
fields.InputDataFields.image: input_image, |
|
fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], |
|
fields.InputDataFields.groundtruth_classes: [1], |
|
fields.InputDataFields.groundtruth_is_crowd: [False], |
|
fields.InputDataFields.groundtruth_area: [32], |
|
fields.InputDataFields.groundtruth_difficult: [True], |
|
fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')], |
|
fields.InputDataFields.groundtruth_confidences: [0.99], |
|
} |
|
|
|
|
|
output_tensors = self.execute_cpu(graph_fn, |
|
[input_image, input_boxes, |
|
input_classes, input_is_crowd, |
|
input_area, |
|
input_difficult, input_label_types, |
|
input_confidences]) |
|
|
|
for key in [fields.InputDataFields.image, |
|
fields.InputDataFields.groundtruth_boxes, |
|
fields.InputDataFields.groundtruth_area, |
|
fields.InputDataFields.groundtruth_confidences]: |
|
self.assertAllClose(expected_tensors[key], output_tensors[key]) |
|
for key in [fields.InputDataFields.groundtruth_classes, |
|
fields.InputDataFields.groundtruth_is_crowd, |
|
fields.InputDataFields.groundtruth_label_types]: |
|
self.assertAllEqual(expected_tensors[key], output_tensors[key]) |
|
|
|
|
|
class ReplaceNaNGroundtruthLabelScoresWithOnes(test_case.TestCase): |
|
|
|
def test_replace_nan_groundtruth_label_scores_with_ones(self): |
|
|
|
def graph_fn(): |
|
label_scores = tf.constant([np.nan, 1.0, np.nan]) |
|
output_tensor = ops.replace_nan_groundtruth_label_scores_with_ones( |
|
label_scores) |
|
return output_tensor |
|
|
|
expected_tensor = [1.0, 1.0, 1.0] |
|
output_tensor = self.execute(graph_fn, []) |
|
self.assertAllClose(expected_tensor, output_tensor) |
|
|
|
def test_input_equals_output_when_no_nans(self): |
|
|
|
input_label_scores = [0.5, 1.0, 1.0] |
|
def graph_fn(): |
|
label_scores_tensor = tf.constant(input_label_scores) |
|
output_label_scores = ops.replace_nan_groundtruth_label_scores_with_ones( |
|
label_scores_tensor) |
|
return output_label_scores |
|
|
|
output_label_scores = self.execute(graph_fn, []) |
|
|
|
self.assertAllClose(input_label_scores, output_label_scores) |
|
|
|
|
|
class GroundtruthFilterWithCrowdBoxesTest(test_case.TestCase): |
|
|
|
def test_filter_groundtruth_with_crowd_boxes(self): |
|
|
|
def graph_fn(): |
|
input_tensors = { |
|
fields.InputDataFields.groundtruth_boxes: |
|
[[0.1, 0.2, 0.6, 0.8], [0.2, 0.4, 0.1, 0.8]], |
|
fields.InputDataFields.groundtruth_classes: [1, 2], |
|
fields.InputDataFields.groundtruth_is_crowd: [True, False], |
|
fields.InputDataFields.groundtruth_area: [100.0, 238.7], |
|
fields.InputDataFields.groundtruth_confidences: [0.5, 0.99], |
|
} |
|
output_tensors = ops.filter_groundtruth_with_crowd_boxes( |
|
input_tensors) |
|
return output_tensors |
|
|
|
expected_tensors = { |
|
fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], |
|
fields.InputDataFields.groundtruth_classes: [2], |
|
fields.InputDataFields.groundtruth_is_crowd: [False], |
|
fields.InputDataFields.groundtruth_area: [238.7], |
|
fields.InputDataFields.groundtruth_confidences: [0.99], |
|
} |
|
|
|
output_tensors = self.execute(graph_fn, []) |
|
for key in [fields.InputDataFields.groundtruth_boxes, |
|
fields.InputDataFields.groundtruth_area, |
|
fields.InputDataFields.groundtruth_confidences]: |
|
self.assertAllClose(expected_tensors[key], output_tensors[key]) |
|
for key in [fields.InputDataFields.groundtruth_classes, |
|
fields.InputDataFields.groundtruth_is_crowd]: |
|
self.assertAllEqual(expected_tensors[key], output_tensors[key]) |
|
|
|
|
|
class GroundtruthFilterWithNanBoxTest(test_case.TestCase): |
|
|
|
def test_filter_groundtruth_with_nan_box_coordinates(self): |
|
|
|
def graph_fn(): |
|
input_tensors = { |
|
fields.InputDataFields.groundtruth_boxes: |
|
[[np.nan, np.nan, np.nan, np.nan], [0.2, 0.4, 0.1, 0.8]], |
|
fields.InputDataFields.groundtruth_classes: [1, 2], |
|
fields.InputDataFields.groundtruth_is_crowd: [False, True], |
|
fields.InputDataFields.groundtruth_area: [100.0, 238.7], |
|
fields.InputDataFields.groundtruth_confidences: [0.5, 0.99], |
|
} |
|
output_tensors = ops.filter_groundtruth_with_nan_box_coordinates( |
|
input_tensors) |
|
return output_tensors |
|
|
|
expected_tensors = { |
|
fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], |
|
fields.InputDataFields.groundtruth_classes: [2], |
|
fields.InputDataFields.groundtruth_is_crowd: [True], |
|
fields.InputDataFields.groundtruth_area: [238.7], |
|
fields.InputDataFields.groundtruth_confidences: [0.99], |
|
} |
|
|
|
output_tensors = self.execute(graph_fn, []) |
|
for key in [fields.InputDataFields.groundtruth_boxes, |
|
fields.InputDataFields.groundtruth_area, |
|
fields.InputDataFields.groundtruth_confidences]: |
|
self.assertAllClose(expected_tensors[key], output_tensors[key]) |
|
for key in [fields.InputDataFields.groundtruth_classes, |
|
fields.InputDataFields.groundtruth_is_crowd]: |
|
self.assertAllEqual(expected_tensors[key], output_tensors[key]) |
|
|
|
|
|
class GroundtruthFilterWithUnrecognizedClassesTest(test_case.TestCase): |
|
|
|
def test_filter_unrecognized_classes(self): |
|
def graph_fn(): |
|
input_tensors = { |
|
fields.InputDataFields.groundtruth_boxes: |
|
[[.3, .3, .5, .7], [0.2, 0.4, 0.1, 0.8]], |
|
fields.InputDataFields.groundtruth_classes: [-1, 2], |
|
fields.InputDataFields.groundtruth_is_crowd: [False, True], |
|
fields.InputDataFields.groundtruth_area: [100.0, 238.7], |
|
fields.InputDataFields.groundtruth_confidences: [0.5, 0.99], |
|
} |
|
output_tensors = ops.filter_unrecognized_classes(input_tensors) |
|
return output_tensors |
|
|
|
expected_tensors = { |
|
fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], |
|
fields.InputDataFields.groundtruth_classes: [2], |
|
fields.InputDataFields.groundtruth_is_crowd: [True], |
|
fields.InputDataFields.groundtruth_area: [238.7], |
|
fields.InputDataFields.groundtruth_confidences: [0.99], |
|
} |
|
|
|
output_tensors = self.execute(graph_fn, []) |
|
for key in [fields.InputDataFields.groundtruth_boxes, |
|
fields.InputDataFields.groundtruth_area, |
|
fields.InputDataFields.groundtruth_confidences]: |
|
self.assertAllClose(expected_tensors[key], output_tensors[key]) |
|
for key in [fields.InputDataFields.groundtruth_classes, |
|
fields.InputDataFields.groundtruth_is_crowd]: |
|
self.assertAllEqual(expected_tensors[key], output_tensors[key]) |
|
|
|
|
|
class OpsTestNormalizeToTarget(test_case.TestCase): |
|
|
|
def test_create_normalize_to_target(self): |
|
|
|
if self.is_tf2(): |
|
self.skipTest('Skipping as variable names not supported in eager mode.') |
|
|
|
inputs = tf.random_uniform([5, 10, 12, 3]) |
|
target_norm_value = 4.0 |
|
dim = 3 |
|
with self.test_session(): |
|
output = ops.normalize_to_target(inputs, target_norm_value, dim) |
|
self.assertEqual(output.op.name, 'NormalizeToTarget/mul') |
|
var_name = slim.get_variables()[0].name |
|
self.assertEqual(var_name, 'NormalizeToTarget/weights:0') |
|
|
|
def test_invalid_dim(self): |
|
inputs = tf.random_uniform([5, 10, 12, 3]) |
|
target_norm_value = 4.0 |
|
dim = 10 |
|
with self.assertRaisesRegexp( |
|
ValueError, |
|
'dim must be non-negative but smaller than the input rank.'): |
|
ops.normalize_to_target(inputs, target_norm_value, dim) |
|
|
|
def test_invalid_target_norm_values(self): |
|
inputs = tf.random_uniform([5, 10, 12, 3]) |
|
target_norm_value = [4.0, 4.0] |
|
dim = 3 |
|
with self.assertRaisesRegexp( |
|
ValueError, 'target_norm_value must be a float or a list of floats'): |
|
ops.normalize_to_target(inputs, target_norm_value, dim) |
|
|
|
def test_correct_output_shape(self): |
|
|
|
if self.is_tf2(): |
|
self.skipTest('normalize_to_target not supported in eager mode because,' |
|
' it requires creating variables.') |
|
|
|
inputs = np.random.uniform(size=(5, 10, 12, 3)).astype(np.float32) |
|
def graph_fn(inputs): |
|
target_norm_value = 4.0 |
|
dim = 3 |
|
output = ops.normalize_to_target(inputs, target_norm_value, dim) |
|
return output |
|
|
|
|
|
|
|
outputs = self.execute_cpu(graph_fn, [inputs]) |
|
self.assertEqual(outputs.shape, inputs.shape) |
|
|
|
def test_correct_initial_output_values(self): |
|
|
|
if self.is_tf2(): |
|
self.skipTest('normalize_to_target not supported in eager mode because,' |
|
' it requires creating variables.') |
|
def graph_fn(): |
|
inputs = tf.constant([[[[3, 4], [7, 24]], |
|
[[5, -12], [-1, 0]]]], tf.float32) |
|
target_norm_value = 10.0 |
|
dim = 3 |
|
normalized_inputs = ops.normalize_to_target(inputs, target_norm_value, |
|
dim) |
|
return normalized_inputs |
|
|
|
expected_output = [[[[30/5.0, 40/5.0], [70/25.0, 240/25.0]], |
|
[[50/13.0, -120/13.0], [-10, 0]]]] |
|
|
|
|
|
output = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose(output, expected_output) |
|
|
|
def test_multiple_target_norm_values(self): |
|
|
|
if self.is_tf2(): |
|
self.skipTest('normalize_to_target not supported in eager mode because,' |
|
' it requires creating variables.') |
|
|
|
def graph_fn(): |
|
inputs = tf.constant([[[[3, 4], [7, 24]], |
|
[[5, -12], [-1, 0]]]], tf.float32) |
|
target_norm_value = [10.0, 20.0] |
|
dim = 3 |
|
normalized_inputs = ops.normalize_to_target(inputs, target_norm_value, |
|
dim) |
|
return normalized_inputs |
|
|
|
expected_output = [[[[30/5.0, 80/5.0], [70/25.0, 480/25.0]], |
|
[[50/13.0, -240/13.0], [-10, 0]]]] |
|
|
|
|
|
|
|
output = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose(output, expected_output) |
|
|
|
|
|
class OpsTestPositionSensitiveCropRegions(test_case.TestCase): |
|
|
|
def test_position_sensitive(self): |
|
num_spatial_bins = [3, 2] |
|
image_shape = [3, 2, 6] |
|
|
|
|
|
|
|
expected_output = np.array([3.5, 3.5]).reshape([2, 1, 1, 1]) |
|
|
|
for crop_size_mult in range(1, 3): |
|
crop_size = [3 * crop_size_mult, 2 * crop_size_mult] |
|
|
|
def graph_fn(): |
|
|
|
image = tf.constant( |
|
list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape) |
|
boxes = tf.random_uniform((2, 4)) |
|
|
|
|
|
ps_crop_and_pool = ops.position_sensitive_crop_regions( |
|
image, boxes, crop_size, num_spatial_bins, global_pool=True) |
|
return ps_crop_and_pool |
|
|
|
output = self.execute(graph_fn, []) |
|
self.assertAllClose(output, expected_output) |
|
|
|
def test_position_sensitive_with_equal_channels(self): |
|
num_spatial_bins = [2, 2] |
|
image_shape = [3, 3, 4] |
|
crop_size = [2, 2] |
|
|
|
def graph_fn(): |
|
image = tf.constant( |
|
list(range(1, 3 * 3 + 1)), dtype=tf.float32, shape=[3, 3, 1]) |
|
tiled_image = tf.tile(image, [1, 1, image_shape[2]]) |
|
boxes = tf.random_uniform((3, 4)) |
|
box_ind = tf.constant([0, 0, 0], dtype=tf.int32) |
|
|
|
|
|
|
|
crop = tf.image.crop_and_resize(tf.expand_dims(image, axis=0), boxes, |
|
box_ind, crop_size) |
|
crop_and_pool = tf.reduce_mean(crop, [1, 2], keepdims=True) |
|
|
|
ps_crop_and_pool = ops.position_sensitive_crop_regions( |
|
tiled_image, |
|
boxes, |
|
crop_size, |
|
num_spatial_bins, |
|
global_pool=True) |
|
|
|
return crop_and_pool, ps_crop_and_pool |
|
|
|
|
|
expected_output, output = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose(output, expected_output) |
|
|
|
def test_raise_value_error_on_num_bins_less_than_one(self): |
|
num_spatial_bins = [1, -1] |
|
image_shape = [1, 1, 2] |
|
crop_size = [2, 2] |
|
|
|
image = tf.constant(1, dtype=tf.float32, shape=image_shape) |
|
boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32) |
|
|
|
with self.assertRaisesRegexp(ValueError, 'num_spatial_bins should be >= 1'): |
|
ops.position_sensitive_crop_regions( |
|
image, boxes, crop_size, num_spatial_bins, global_pool=True) |
|
|
|
def test_raise_value_error_on_non_divisible_crop_size(self): |
|
num_spatial_bins = [2, 3] |
|
image_shape = [1, 1, 6] |
|
crop_size = [3, 2] |
|
|
|
image = tf.constant(1, dtype=tf.float32, shape=image_shape) |
|
boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32) |
|
|
|
with self.assertRaisesRegexp( |
|
ValueError, 'crop_size should be divisible by num_spatial_bins'): |
|
ops.position_sensitive_crop_regions( |
|
image, boxes, crop_size, num_spatial_bins, global_pool=True) |
|
|
|
def test_raise_value_error_on_non_divisible_num_channels(self): |
|
num_spatial_bins = [2, 2] |
|
image_shape = [1, 1, 5] |
|
crop_size = [2, 2] |
|
|
|
def graph_fn(): |
|
image = tf.constant(1, dtype=tf.float32, shape=image_shape) |
|
boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32) |
|
|
|
return ops.position_sensitive_crop_regions( |
|
image, boxes, crop_size, num_spatial_bins, global_pool=True) |
|
|
|
with self.assertRaisesRegexp( |
|
ValueError, 'Dimension size must be evenly divisible by 4 but is 5'): |
|
self.execute(graph_fn, []) |
|
|
|
def test_position_sensitive_with_global_pool_false(self): |
|
num_spatial_bins = [3, 2] |
|
image_shape = [3, 2, 6] |
|
num_boxes = 2 |
|
|
|
expected_output = [] |
|
|
|
|
|
expected_output.append(np.expand_dims( |
|
np.tile(np.array([[1, 2], |
|
[3, 4], |
|
[5, 6]]), (num_boxes, 1, 1)), |
|
axis=-1)) |
|
|
|
|
|
expected_output.append(np.expand_dims( |
|
np.tile(np.array([[1, 1, 2, 2], |
|
[1, 1, 2, 2], |
|
[3, 3, 4, 4], |
|
[3, 3, 4, 4], |
|
[5, 5, 6, 6], |
|
[5, 5, 6, 6]]), (num_boxes, 1, 1)), |
|
axis=-1)) |
|
|
|
for crop_size_mult in range(1, 3): |
|
crop_size = [3 * crop_size_mult, 2 * crop_size_mult] |
|
|
|
|
|
def graph_fn(): |
|
|
|
image = tf.constant( |
|
list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape) |
|
boxes = tf.random_uniform((num_boxes, 4)) |
|
|
|
ps_crop = ops.position_sensitive_crop_regions( |
|
image, boxes, crop_size, num_spatial_bins, global_pool=False) |
|
return ps_crop |
|
|
|
output = self.execute(graph_fn, []) |
|
self.assertAllClose(output, expected_output[crop_size_mult - 1]) |
|
|
|
def test_position_sensitive_with_global_pool_false_and_do_global_pool(self): |
|
num_spatial_bins = [3, 2] |
|
image_shape = [3, 2, 6] |
|
num_boxes = 2 |
|
|
|
expected_output = [] |
|
|
|
|
|
expected_output.append(np.mean( |
|
np.expand_dims( |
|
np.tile(np.array([[1, 2], |
|
[3, 4], |
|
[5, 6]]), (num_boxes, 1, 1)), |
|
axis=-1), |
|
axis=(1, 2), keepdims=True)) |
|
|
|
|
|
expected_output.append(np.mean( |
|
np.expand_dims( |
|
np.tile(np.array([[1, 1, 2, 2], |
|
[1, 1, 2, 2], |
|
[3, 3, 4, 4], |
|
[3, 3, 4, 4], |
|
[5, 5, 6, 6], |
|
[5, 5, 6, 6]]), (num_boxes, 1, 1)), |
|
axis=-1), |
|
axis=(1, 2), keepdims=True)) |
|
|
|
for crop_size_mult in range(1, 3): |
|
crop_size = [3 * crop_size_mult, 2 * crop_size_mult] |
|
|
|
def graph_fn(): |
|
|
|
|
|
image = tf.constant( |
|
list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape) |
|
boxes = tf.random_uniform((num_boxes, 4)) |
|
|
|
|
|
|
|
ps_crop = ops.position_sensitive_crop_regions( |
|
image, boxes, crop_size, num_spatial_bins, global_pool=False) |
|
ps_crop_and_pool = tf.reduce_mean( |
|
ps_crop, reduction_indices=(1, 2), keepdims=True) |
|
return ps_crop_and_pool |
|
|
|
output = self.execute(graph_fn, []) |
|
self.assertAllEqual(output, expected_output[crop_size_mult - 1]) |
|
|
|
def test_raise_value_error_on_non_square_block_size(self): |
|
num_spatial_bins = [3, 2] |
|
image_shape = [3, 2, 6] |
|
crop_size = [6, 2] |
|
|
|
image = tf.constant(1, dtype=tf.float32, shape=image_shape) |
|
boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32) |
|
|
|
with self.assertRaisesRegexp( |
|
ValueError, 'Only support square bin crop size for now.'): |
|
ops.position_sensitive_crop_regions( |
|
image, boxes, crop_size, num_spatial_bins, global_pool=False) |
|
|
|
|
|
class OpsTestBatchPositionSensitiveCropRegions(test_case.TestCase): |
|
|
|
def test_position_sensitive_with_single_bin(self): |
|
num_spatial_bins = [1, 1] |
|
image_shape = [2, 3, 3, 4] |
|
crop_size = [2, 2] |
|
|
|
def graph_fn(): |
|
image = tf.random_uniform(image_shape) |
|
boxes = tf.random_uniform((2, 3, 4)) |
|
box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32) |
|
|
|
|
|
|
|
crop = tf.image.crop_and_resize(image, |
|
tf.reshape(boxes, [-1, 4]), box_ind, |
|
crop_size) |
|
crop_and_pool = tf.reduce_mean(crop, [1, 2], keepdims=True) |
|
crop_and_pool = tf.reshape(crop_and_pool, [2, 3, 1, 1, 4]) |
|
|
|
ps_crop_and_pool = ops.batch_position_sensitive_crop_regions( |
|
image, boxes, crop_size, num_spatial_bins, global_pool=True) |
|
return crop_and_pool, ps_crop_and_pool |
|
|
|
|
|
expected_output, output = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose(output, expected_output) |
|
|
|
def test_position_sensitive_with_global_pool_false_and_known_boxes(self): |
|
num_spatial_bins = [2, 2] |
|
image_shape = [2, 2, 2, 4] |
|
crop_size = [2, 2] |
|
|
|
|
|
|
|
expected_output = [] |
|
|
|
|
|
expected_output.append( |
|
np.reshape(np.array([[4, 7], |
|
[10, 13]]), |
|
(1, 2, 2, 1)) |
|
) |
|
|
|
|
|
expected_output.append( |
|
np.reshape(np.array([[3, 6], |
|
[7, 10]]), |
|
(1, 2, 2, 1)) |
|
) |
|
expected_output = np.stack(expected_output, axis=0) |
|
|
|
def graph_fn(): |
|
images = tf.constant( |
|
list(range(1, 2 * 2 * 4 + 1)) * 2, dtype=tf.float32, |
|
shape=image_shape) |
|
|
|
|
|
boxes = tf.constant(np.array([[[0., 0., 1., 1.]], |
|
[[0., 0., 0.5, 1.]]]), dtype=tf.float32) |
|
|
|
ps_crop = ops.batch_position_sensitive_crop_regions( |
|
images, boxes, crop_size, num_spatial_bins, global_pool=False) |
|
return ps_crop |
|
|
|
output = self.execute(graph_fn, []) |
|
self.assertAllEqual(output, expected_output) |
|
|
|
def test_position_sensitive_with_global_pool_false_and_single_bin(self): |
|
num_spatial_bins = [1, 1] |
|
image_shape = [2, 3, 3, 4] |
|
crop_size = [1, 1] |
|
|
|
def graph_fn(): |
|
images = tf.random_uniform(image_shape) |
|
boxes = tf.random_uniform((2, 3, 4)) |
|
|
|
|
|
|
|
|
|
ps_crop_and_pool = ops.batch_position_sensitive_crop_regions( |
|
images, boxes, crop_size, num_spatial_bins, global_pool=True) |
|
ps_crop = ops.batch_position_sensitive_crop_regions( |
|
images, boxes, crop_size, num_spatial_bins, global_pool=False) |
|
return ps_crop_and_pool, ps_crop |
|
|
|
pooled_output, unpooled_output = self.execute(graph_fn, []) |
|
self.assertAllClose(pooled_output, unpooled_output) |
|
|
|
|
|
|
|
|
|
class ReframeBoxMasksToImageMasksTest(test_case.TestCase): |
|
|
|
def testZeroImageOnEmptyMask(self): |
|
np_expected_image_masks = np.array([[[0, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0]]], dtype=np.float32) |
|
def graph_fn(): |
|
box_masks = tf.constant([[[0, 0], |
|
[0, 0]]], dtype=tf.float32) |
|
boxes = tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32) |
|
image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes, |
|
image_height=4, |
|
image_width=4) |
|
return image_masks |
|
|
|
np_image_masks = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose(np_image_masks, np_expected_image_masks) |
|
|
|
def testZeroBoxMasks(self): |
|
|
|
def graph_fn(): |
|
box_masks = tf.zeros([0, 3, 3], dtype=tf.float32) |
|
boxes = tf.zeros([0, 4], dtype=tf.float32) |
|
image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes, |
|
image_height=4, |
|
image_width=4) |
|
return image_masks |
|
|
|
np_image_masks = self.execute_cpu(graph_fn, []) |
|
self.assertAllEqual(np_image_masks.shape, np.array([0, 4, 4])) |
|
|
|
def testBoxWithZeroArea(self): |
|
|
|
def graph_fn(): |
|
box_masks = tf.zeros([1, 3, 3], dtype=tf.float32) |
|
boxes = tf.constant([[0.1, 0.2, 0.1, 0.7]], dtype=tf.float32) |
|
image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes, |
|
image_height=4, |
|
image_width=4) |
|
return image_masks |
|
|
|
np_image_masks = self.execute_cpu(graph_fn, []) |
|
self.assertAllEqual(np_image_masks.shape, np.array([1, 4, 4])) |
|
|
|
def testMaskIsCenteredInImageWhenBoxIsCentered(self): |
|
|
|
def graph_fn(): |
|
box_masks = tf.constant([[[1, 1], |
|
[1, 1]]], dtype=tf.float32) |
|
boxes = tf.constant([[0.25, 0.25, 0.75, 0.75]], dtype=tf.float32) |
|
image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes, |
|
image_height=4, |
|
image_width=4) |
|
return image_masks |
|
|
|
np_expected_image_masks = np.array([[[0, 0, 0, 0], |
|
[0, 1, 1, 0], |
|
[0, 1, 1, 0], |
|
[0, 0, 0, 0]]], dtype=np.float32) |
|
np_image_masks = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose(np_image_masks, np_expected_image_masks) |
|
|
|
def testMaskOffCenterRemainsOffCenterInImage(self): |
|
|
|
def graph_fn(): |
|
box_masks = tf.constant([[[1, 0], |
|
[0, 1]]], dtype=tf.float32) |
|
boxes = tf.constant([[0.25, 0.5, 0.75, 1.0]], dtype=tf.float32) |
|
image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes, |
|
image_height=4, |
|
image_width=4) |
|
return image_masks |
|
|
|
np_expected_image_masks = np.array([[[0, 0, 0, 0], |
|
[0, 0, 0.6111111, 0.16666669], |
|
[0, 0, 0.3888889, 0.83333337], |
|
[0, 0, 0, 0]]], dtype=np.float32) |
|
np_image_masks = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose(np_image_masks, np_expected_image_masks) |
|
|
|
|
|
class MergeBoxesWithMultipleLabelsTest(test_case.TestCase): |
|
|
|
def testMergeBoxesWithMultipleLabels(self): |
|
|
|
def graph_fn(): |
|
boxes = tf.constant( |
|
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75], |
|
[0.25, 0.25, 0.75, 0.75]], |
|
dtype=tf.float32) |
|
class_indices = tf.constant([0, 4, 2], dtype=tf.int32) |
|
class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32) |
|
num_classes = 5 |
|
merged_boxes, merged_classes, merged_confidences, merged_box_indices = ( |
|
ops.merge_boxes_with_multiple_labels( |
|
boxes, class_indices, class_confidences, num_classes)) |
|
|
|
return (merged_boxes, merged_classes, merged_confidences, |
|
merged_box_indices) |
|
|
|
expected_merged_boxes = np.array( |
|
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=np.float32) |
|
expected_merged_classes = np.array( |
|
[[1, 0, 1, 0, 0], [0, 0, 0, 0, 1]], dtype=np.int32) |
|
expected_merged_confidences = np.array( |
|
[[0.8, 0, 0.1, 0, 0], [0, 0, 0, 0, 0.2]], dtype=np.float32) |
|
expected_merged_box_indices = np.array([0, 1], dtype=np.int32) |
|
|
|
|
|
(np_merged_boxes, np_merged_classes, np_merged_confidences, |
|
np_merged_box_indices) = self.execute_cpu(graph_fn, []) |
|
self.assertAllClose(np_merged_boxes, expected_merged_boxes) |
|
self.assertAllClose(np_merged_classes, expected_merged_classes) |
|
self.assertAllClose(np_merged_confidences, expected_merged_confidences) |
|
self.assertAllClose(np_merged_box_indices, expected_merged_box_indices) |
|
|
|
def testMergeBoxesWithMultipleLabelsCornerCase(self): |
|
|
|
def graph_fn(): |
|
boxes = tf.constant( |
|
[[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1], |
|
[1, 1, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1]], |
|
dtype=tf.float32) |
|
class_indices = tf.constant([0, 1, 2, 3, 2, 1, 0, 3], dtype=tf.int32) |
|
class_confidences = tf.constant([0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6], |
|
dtype=tf.float32) |
|
num_classes = 4 |
|
merged_boxes, merged_classes, merged_confidences, merged_box_indices = ( |
|
ops.merge_boxes_with_multiple_labels( |
|
boxes, class_indices, class_confidences, num_classes)) |
|
return (merged_boxes, merged_classes, merged_confidences, |
|
merged_box_indices) |
|
|
|
expected_merged_boxes = np.array( |
|
[[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]], |
|
dtype=np.float32) |
|
expected_merged_classes = np.array( |
|
[[1, 0, 0, 1], [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]], |
|
dtype=np.int32) |
|
expected_merged_confidences = np.array( |
|
[[0.1, 0, 0, 0.6], [0.4, 0.9, 0, 0], |
|
[0, 0.7, 0.2, 0], [0, 0, 0.3, 0.8]], dtype=np.float32) |
|
expected_merged_box_indices = np.array([0, 1, 2, 3], dtype=np.int32) |
|
|
|
|
|
(np_merged_boxes, np_merged_classes, np_merged_confidences, |
|
np_merged_box_indices) = self.execute_cpu(graph_fn, []) |
|
|
|
self.assertAllClose(np_merged_boxes, expected_merged_boxes) |
|
self.assertAllClose(np_merged_classes, expected_merged_classes) |
|
self.assertAllClose(np_merged_confidences, expected_merged_confidences) |
|
self.assertAllClose(np_merged_box_indices, expected_merged_box_indices) |
|
|
|
def testMergeBoxesWithEmptyInputs(self): |
|
|
|
def graph_fn(): |
|
boxes = tf.zeros([0, 4], dtype=tf.float32) |
|
class_indices = tf.constant([], dtype=tf.int32) |
|
class_confidences = tf.constant([], dtype=tf.float32) |
|
num_classes = 5 |
|
merged_boxes, merged_classes, merged_confidences, merged_box_indices = ( |
|
ops.merge_boxes_with_multiple_labels( |
|
boxes, class_indices, class_confidences, num_classes)) |
|
return (merged_boxes, merged_classes, merged_confidences, |
|
merged_box_indices) |
|
|
|
|
|
(np_merged_boxes, np_merged_classes, np_merged_confidences, |
|
np_merged_box_indices) = self.execute_cpu(graph_fn, []) |
|
self.assertAllEqual(np_merged_boxes.shape, [0, 4]) |
|
self.assertAllEqual(np_merged_classes.shape, [0, 5]) |
|
self.assertAllEqual(np_merged_confidences.shape, [0, 5]) |
|
self.assertAllEqual(np_merged_box_indices.shape, [0]) |
|
|
|
def testMergeBoxesWithMultipleLabelsUsesInt64(self): |
|
|
|
if self.is_tf2(): |
|
self.skipTest('Getting op names is not supported in eager mode.') |
|
|
|
boxes = tf.constant( |
|
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75], |
|
[0.25, 0.25, 0.75, 0.75]], |
|
dtype=tf.float32) |
|
class_indices = tf.constant([0, 4, 2], dtype=tf.int32) |
|
class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32) |
|
num_classes = 5 |
|
ops.merge_boxes_with_multiple_labels( |
|
boxes, class_indices, class_confidences, num_classes) |
|
|
|
graph = tf.get_default_graph() |
|
|
|
def assert_dtype_is_int64(op_name): |
|
op = graph.get_operation_by_name(op_name) |
|
self.assertEqual(op.get_attr('dtype'), tf.int64) |
|
|
|
def assert_t_is_int64(op_name): |
|
op = graph.get_operation_by_name(op_name) |
|
self.assertEqual(op.get_attr('T'), tf.int64) |
|
|
|
assert_dtype_is_int64('map/TensorArray') |
|
assert_dtype_is_int64('map/TensorArray_1') |
|
assert_dtype_is_int64('map/while/TensorArrayReadV3') |
|
assert_t_is_int64('map/while/TensorArrayWrite/TensorArrayWriteV3') |
|
assert_t_is_int64( |
|
'map/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3') |
|
assert_dtype_is_int64('map/TensorArrayStack/TensorArrayGatherV3') |
|
|
|
|
|
class NearestNeighborUpsamplingTest(test_case.TestCase): |
|
|
|
def test_upsampling_with_single_scale(self): |
|
|
|
def graph_fn(inputs): |
|
custom_op_output = ops.nearest_neighbor_upsampling(inputs, scale=2) |
|
return custom_op_output |
|
inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1]) |
|
custom_op_output = self.execute(graph_fn, [inputs]) |
|
|
|
expected_output = [[[[0], [0], [1], [1]], |
|
[[0], [0], [1], [1]], |
|
[[2], [2], [3], [3]], |
|
[[2], [2], [3], [3]]]] |
|
self.assertAllClose(custom_op_output, expected_output) |
|
|
|
def test_upsampling_with_separate_height_width_scales(self): |
|
|
|
def graph_fn(inputs): |
|
custom_op_output = ops.nearest_neighbor_upsampling(inputs, |
|
height_scale=2, |
|
width_scale=3) |
|
return custom_op_output |
|
inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1]) |
|
custom_op_output = self.execute(graph_fn, [inputs]) |
|
|
|
expected_output = [[[[0], [0], [0], [1], [1], [1]], |
|
[[0], [0], [0], [1], [1], [1]], |
|
[[2], [2], [2], [3], [3], [3]], |
|
[[2], [2], [2], [3], [3], [3]]]] |
|
self.assertAllClose(custom_op_output, expected_output) |
|
|
|
|
|
class MatmulGatherOnZerothAxis(test_case.TestCase): |
|
|
|
def test_gather_2d(self): |
|
|
|
def graph_fn(params, indices): |
|
return ops.matmul_gather_on_zeroth_axis(params, indices) |
|
|
|
params = np.array([[1, 2, 3, 4], |
|
[5, 6, 7, 8], |
|
[9, 10, 11, 12], |
|
[0, 1, 0, 0]], dtype=np.float32) |
|
indices = np.array([2, 2, 1], dtype=np.int32) |
|
expected_output = np.array([[9, 10, 11, 12], [9, 10, 11, 12], [5, 6, 7, 8]]) |
|
gather_output = self.execute(graph_fn, [params, indices]) |
|
self.assertAllClose(gather_output, expected_output) |
|
|
|
def test_gather_3d(self): |
|
|
|
def graph_fn(params, indices): |
|
return ops.matmul_gather_on_zeroth_axis(params, indices) |
|
|
|
params = np.array([[[1, 2], [3, 4]], |
|
[[5, 6], [7, 8]], |
|
[[9, 10], [11, 12]], |
|
[[0, 1], [0, 0]]], dtype=np.float32) |
|
indices = np.array([0, 3, 1], dtype=np.int32) |
|
expected_output = np.array([[[1, 2], [3, 4]], |
|
[[0, 1], [0, 0]], |
|
[[5, 6], [7, 8]]]) |
|
gather_output = self.execute(graph_fn, [params, indices]) |
|
self.assertAllClose(gather_output, expected_output) |
|
|
|
def test_gather_with_many_indices(self): |
|
|
|
def graph_fn(params, indices): |
|
return ops.matmul_gather_on_zeroth_axis(params, indices) |
|
|
|
params = np.array([[1, 2, 3, 4], |
|
[5, 6, 7, 8], |
|
[9, 10, 11, 12], |
|
[0, 1, 0, 0]], dtype=np.float32) |
|
indices = np.array([0, 0, 0, 0, 0, 0], dtype=np.int32) |
|
expected_output = np.array(6*[[1, 2, 3, 4]]) |
|
gather_output = self.execute(graph_fn, [params, indices]) |
|
self.assertAllClose(gather_output, expected_output) |
|
|
|
def test_gather_with_dynamic_shape_input(self): |
|
|
|
def graph_fn(params, indices): |
|
return ops.matmul_gather_on_zeroth_axis(params, indices) |
|
|
|
params = np.array([[1, 2, 3, 4], |
|
[5, 6, 7, 8], |
|
[9, 10, 11, 12], |
|
[0, 1, 0, 0]], dtype=np.float32) |
|
indices = np.array([0, 0, 0, 0, 0, 0]) |
|
expected_output = np.array(6*[[1, 2, 3, 4]]) |
|
gather_output = self.execute(graph_fn, [params, indices]) |
|
self.assertAllClose(gather_output, expected_output) |
|
|
|
|
|
class FpnFeatureLevelsTest(test_case.TestCase): |
|
|
|
def test_correct_fpn_levels(self): |
|
image_size = 640 |
|
pretraininig_image_size = 224 |
|
image_ratio = image_size * 1.0 / pretraininig_image_size |
|
boxes = np.array( |
|
[ |
|
[ |
|
[0, 0, 111, 111], |
|
[0, 0, 113, 113], |
|
[0, 0, 223, 223], |
|
[0, 0, 225, 225], |
|
[0, 0, 449, 449] |
|
], |
|
], |
|
dtype=np.float32) / image_size |
|
|
|
def graph_fn(boxes): |
|
return ops.fpn_feature_levels( |
|
num_levels=5, unit_scale_index=2, image_ratio=image_ratio, |
|
boxes=boxes) |
|
|
|
levels = self.execute(graph_fn, [boxes]) |
|
self.assertAllEqual([[0, 1, 1, 2, 3]], levels) |
|
|
|
|
|
class TestBfloat16ToFloat32(test_case.TestCase): |
|
|
|
def test_convert_list(self): |
|
var_list = [ |
|
tf.constant([1.], dtype=tf.bfloat16), |
|
tf.constant([2], dtype=tf.int32) |
|
] |
|
casted_var_list = ops.bfloat16_to_float32_nested(var_list) |
|
self.assertEqual(casted_var_list[0].dtype, tf.float32) |
|
self.assertEqual(casted_var_list[1].dtype, tf.int32) |
|
|
|
def test_convert_tensor_dict(self): |
|
tensor_dict = { |
|
'key1': tf.constant([1.], dtype=tf.bfloat16), |
|
'key2': [ |
|
tf.constant([0.5], dtype=tf.bfloat16), |
|
tf.constant([7], dtype=tf.int32), |
|
], |
|
'key3': tf.constant([2], dtype=tf.uint8), |
|
} |
|
tensor_dict = ops.bfloat16_to_float32_nested(tensor_dict) |
|
|
|
self.assertEqual(tensor_dict['key1'].dtype, tf.float32) |
|
self.assertEqual(tensor_dict['key2'][0].dtype, tf.float32) |
|
self.assertEqual(tensor_dict['key2'][1].dtype, tf.int32) |
|
self.assertEqual(tensor_dict['key3'].dtype, tf.uint8) |
|
|
|
|
|
class TestGatherWithPaddingValues(test_case.TestCase): |
|
|
|
def test_gather_with_padding_values(self): |
|
expected_gathered_tensor = [ |
|
[0, 0, 0.2, 0.2], |
|
[0, 0, 0, 0], |
|
[0, 0, 0.1, 0.1], |
|
[0, 0, 0, 0], |
|
] |
|
|
|
def graph_fn(): |
|
indices = tf.constant([1, -1, 0, -1]) |
|
input_tensor = tf.constant([[0, 0, 0.1, 0.1], [0, 0, 0.2, 0.2]], |
|
dtype=tf.float32) |
|
|
|
gathered_tensor = ops.gather_with_padding_values( |
|
input_tensor, |
|
indices=indices, |
|
padding_value=tf.zeros_like(input_tensor[0])) |
|
self.assertEqual(gathered_tensor.dtype, tf.float32) |
|
|
|
return gathered_tensor |
|
|
|
gathered_tensor_np = self.execute(graph_fn, []) |
|
self.assertAllClose(expected_gathered_tensor, gathered_tensor_np) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|