|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Factory module for getting the complete image to voxel generation network.""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import tensorflow as tf |
|
|
|
from nets import perspective_projector |
|
from nets import ptn_encoder |
|
from nets import ptn_vox_decoder |
|
|
|
_NAME_TO_NETS = { |
|
'ptn_encoder': ptn_encoder, |
|
'ptn_vox_decoder': ptn_vox_decoder, |
|
'perspective_projector': perspective_projector, |
|
} |
|
|
|
|
|
def _get_network(name): |
|
"""Gets a single encoder/decoder network model.""" |
|
|
|
if name not in _NAME_TO_NETS: |
|
raise ValueError('Network name [%s] not recognized.' % name) |
|
return _NAME_TO_NETS[name].model |
|
|
|
|
|
def get(params, is_training=False, reuse=False, run_projection=True): |
|
"""Factory function to get the training/pretraining im->vox model (NIPS16). |
|
|
|
Args: |
|
params: Different parameters used througout ptn, typically FLAGS (dict). |
|
is_training: Set to True if while training (boolean). |
|
reuse: Set as True if sharing variables with a model that has already |
|
been built (boolean). |
|
run_projection: Set as False if not interested in mask and projection |
|
images. Useful in evaluation routine (boolean). |
|
Returns: |
|
Model function for network (inputs to outputs). |
|
""" |
|
def model(inputs): |
|
"""Model function corresponding to a specific network architecture.""" |
|
outputs = {} |
|
|
|
|
|
encoder_fn = _get_network(params.encoder_name) |
|
with tf.variable_scope('encoder', reuse=reuse): |
|
|
|
enc_outputs = encoder_fn(inputs['images_1'], params, is_training) |
|
outputs['ids_1'] = enc_outputs['ids'] |
|
|
|
|
|
decoder_fn = _get_network(params.decoder_name) |
|
with tf.variable_scope('decoder', reuse=reuse): |
|
outputs['voxels_1'] = decoder_fn(outputs['ids_1'], params, is_training) |
|
if run_projection: |
|
projector_fn = _get_network(params.projector_name) |
|
with tf.variable_scope('projector', reuse=reuse): |
|
outputs['projs_1'] = projector_fn( |
|
outputs['voxels_1'], inputs['matrix_1'], params, is_training) |
|
|
|
with tf.variable_scope('oracle', reuse=reuse): |
|
outputs['masks_1'] = projector_fn(inputs['voxels'], inputs['matrix_1'], |
|
params, False) |
|
|
|
|
|
for k in range(1, params.step_size): |
|
with tf.variable_scope('projector', reuse=True): |
|
outputs['projs_%d' % (k + 1)] = projector_fn( |
|
outputs['voxels_1'], inputs['matrix_%d' % |
|
(k + 1)], params, is_training) |
|
with tf.variable_scope('oracle', reuse=True): |
|
outputs['masks_%d' % (k + 1)] = projector_fn( |
|
inputs['voxels'], inputs['matrix_%d' % (k + 1)], params, False) |
|
|
|
return outputs |
|
|
|
return model |
|
|