|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""3D->2D projector model as used in PTN (NIPS16).""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import tensorflow as tf |
|
|
|
from nets import perspective_transform |
|
|
|
|
|
def model(voxels, transform_matrix, params, is_training): |
|
"""Model transforming the 3D voxels into 2D projections. |
|
|
|
Args: |
|
voxels: A tensor of size [batch, depth, height, width, channel] |
|
representing the input of projection layer (tf.float32). |
|
transform_matrix: A tensor of size [batch, 16] representing |
|
the flattened 4-by-4 matrix for transformation (tf.float32). |
|
params: Model parameters (dict). |
|
is_training: Set to True if while training (boolean). |
|
|
|
Returns: |
|
A transformed tensor (tf.float32) |
|
|
|
""" |
|
del is_training |
|
|
|
|
|
|
|
|
|
voxels = tf.transpose(voxels, [0, 2, 1, 3, 4]) |
|
z_near = params.focal_length |
|
z_far = params.focal_length + params.focal_range |
|
transformed_voxels = perspective_transform.transformer( |
|
voxels, transform_matrix, [params.vox_size] * 3, z_near, z_far) |
|
views = tf.reduce_max(transformed_voxels, [1]) |
|
views = tf.reverse(views, [1]) |
|
return views |
|
|