|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Creates rotator network model. |
|
|
|
This model performs the out-of-plane rotations given input image and action. |
|
The action is either no-op, rotate clockwise or rotate counter-clockwise. |
|
|
|
""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import tensorflow as tf |
|
|
|
|
|
def bilinear(input_x, input_y, output_size): |
|
"""Define the bilinear transformation layer.""" |
|
shape_x = input_x.get_shape().as_list() |
|
shape_y = input_y.get_shape().as_list() |
|
|
|
weights_initializer = tf.truncated_normal_initializer(stddev=0.02, |
|
seed=1) |
|
biases_initializer = tf.constant_initializer(0.0) |
|
|
|
matrix = tf.get_variable("Matrix", [shape_x[1], shape_y[1], output_size], |
|
tf.float32, initializer=weights_initializer) |
|
bias = tf.get_variable("Bias", [output_size], |
|
initializer=biases_initializer) |
|
|
|
tf.contrib.framework.add_model_variable(matrix) |
|
tf.contrib.framework.add_model_variable(bias) |
|
|
|
h0 = tf.matmul(input_x, tf.reshape(matrix, |
|
[shape_x[1], shape_y[1]*output_size])) |
|
h0 = tf.reshape(h0, [-1, shape_y[1], output_size]) |
|
h1 = tf.tile(tf.reshape(input_y, [-1, shape_y[1], 1]), |
|
[1, 1, output_size]) |
|
h1 = tf.multiply(h0, h1) |
|
return tf.reduce_sum(h1, 1) + bias |
|
|
|
|
|
def model(poses, actions, params, is_training): |
|
"""Model for performing rotation.""" |
|
del is_training |
|
return bilinear(poses, actions, params.z_dim) |
|
|