|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Training decoder as used in PTN (NIPS16).""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import tensorflow as tf |
|
|
|
slim = tf.contrib.slim |
|
|
|
|
|
@tf.contrib.framework.add_arg_scope |
|
def conv3d_transpose(inputs, |
|
num_outputs, |
|
kernel_size, |
|
stride=1, |
|
padding='SAME', |
|
activation_fn=tf.nn.relu, |
|
weights_initializer=tf.contrib.layers.xavier_initializer(), |
|
biases_initializer=tf.zeros_initializer(), |
|
reuse=None, |
|
trainable=True, |
|
scope=None): |
|
"""Wrapper for conv3d_transpose layer. |
|
|
|
This function wraps the tf.conv3d_transpose with basic non-linearity. |
|
Tt creates a variable called `weights`, representing the kernel, |
|
that is convoled with the input. A second varibale called `biases' |
|
is added to the result of operation. |
|
""" |
|
with tf.variable_scope( |
|
scope, 'Conv3d_transpose', [inputs], reuse=reuse): |
|
dtype = inputs.dtype.base_dtype |
|
kernel_d, kernel_h, kernel_w = kernel_size[0:3] |
|
num_filters_in = inputs.get_shape()[4] |
|
|
|
weights_shape = [kernel_d, kernel_h, kernel_w, num_outputs, num_filters_in] |
|
weights = tf.get_variable('weights', |
|
shape=weights_shape, |
|
dtype=dtype, |
|
initializer=weights_initializer, |
|
trainable=trainable) |
|
tf.contrib.framework.add_model_variable(weights) |
|
|
|
input_shape = inputs.get_shape().as_list() |
|
batch_size = input_shape[0] |
|
depth = input_shape[1] |
|
height = input_shape[2] |
|
width = input_shape[3] |
|
|
|
def get_deconv_dim(dim_size, stride_size): |
|
|
|
if isinstance(dim_size, tf.Tensor): |
|
dim_size = tf.multiply(dim_size, stride_size) |
|
elif dim_size is not None: |
|
dim_size *= stride_size |
|
return dim_size |
|
|
|
out_depth = get_deconv_dim(depth, stride) |
|
out_height = get_deconv_dim(height, stride) |
|
out_width = get_deconv_dim(width, stride) |
|
|
|
out_shape = [batch_size, out_depth, out_height, out_width, num_outputs] |
|
outputs = tf.nn.conv3d_transpose(inputs, weights, out_shape, |
|
[1, stride, stride, stride, 1], |
|
padding=padding) |
|
|
|
outputs.set_shape(out_shape) |
|
|
|
if biases_initializer is not None: |
|
biases = tf.get_variable('biases', |
|
shape=[num_outputs,], |
|
dtype=dtype, |
|
initializer=biases_initializer, |
|
trainable=trainable) |
|
tf.contrib.framework.add_model_variable(biases) |
|
outputs = tf.nn.bias_add(outputs, biases) |
|
|
|
if activation_fn: |
|
outputs = activation_fn(outputs) |
|
return outputs |
|
|
|
|
|
def model(identities, params, is_training): |
|
"""Model transforming embedding to voxels.""" |
|
del is_training |
|
f_dim = params.f_dim |
|
|
|
|
|
|
|
with slim.arg_scope( |
|
[slim.fully_connected, conv3d_transpose], |
|
weights_initializer=tf.truncated_normal_initializer(stddev=0.02, seed=1)): |
|
h0 = slim.fully_connected( |
|
identities, 4 * 4 * 4 * f_dim * 8, activation_fn=tf.nn.relu) |
|
h1 = tf.reshape(h0, [-1, 4, 4, 4, f_dim * 8]) |
|
h1 = conv3d_transpose( |
|
h1, f_dim * 4, [4, 4, 4], stride=2, activation_fn=tf.nn.relu) |
|
h2 = conv3d_transpose( |
|
h1, int(f_dim * 3 / 2), [5, 5, 5], stride=2, activation_fn=tf.nn.relu) |
|
h3 = conv3d_transpose( |
|
h2, 1, [6, 6, 6], stride=2, activation_fn=tf.nn.sigmoid) |
|
return h3 |
|
|