|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""LSUN dataset formatting. |
|
|
|
Download and format the LSUN dataset as follow: |
|
git clone https://github.com/fyu/lsun.git |
|
cd lsun |
|
python2.7 download.py -c [CATEGORY] |
|
|
|
Then unzip the downloaded .zip files before executing: |
|
python2.7 data.py export [IMAGE_DB_PATH] --out_dir [LSUN_FOLDER] --flat |
|
|
|
Then use the script as follow: |
|
python lsun_formatting.py \ |
|
--file_out [OUTPUT_FILE_PATH_PREFIX] \ |
|
--fn_root [LSUN_FOLDER] |
|
|
|
""" |
|
from __future__ import print_function |
|
|
|
import os |
|
import os.path |
|
|
|
import numpy |
|
import skimage.transform |
|
from PIL import Image |
|
import tensorflow as tf |
|
|
|
|
|
tf.flags.DEFINE_string("file_out", "", |
|
"Filename of the output .tfrecords file.") |
|
tf.flags.DEFINE_string("fn_root", "", "Name of root file path.") |
|
|
|
FLAGS = tf.flags.FLAGS |
|
|
|
|
|
def _int64_feature(value): |
|
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) |
|
|
|
|
|
def _bytes_feature(value): |
|
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) |
|
|
|
|
|
def main(): |
|
"""Main converter function.""" |
|
fn_root = FLAGS.fn_root |
|
img_fn_list = os.listdir(fn_root) |
|
img_fn_list = [img_fn for img_fn in img_fn_list |
|
if img_fn.endswith('.webp')] |
|
num_examples = len(img_fn_list) |
|
|
|
n_examples_per_file = 10000 |
|
for example_idx, img_fn in enumerate(img_fn_list): |
|
if example_idx % n_examples_per_file == 0: |
|
file_out = "%s_%05d.tfrecords" |
|
file_out = file_out % (FLAGS.file_out, |
|
example_idx // n_examples_per_file) |
|
print("Writing on:", file_out) |
|
writer = tf.python_io.TFRecordWriter(file_out) |
|
if example_idx % 1000 == 0: |
|
print(example_idx, "/", num_examples) |
|
image_raw = numpy.array(Image.open(os.path.join(fn_root, img_fn))) |
|
rows = image_raw.shape[0] |
|
cols = image_raw.shape[1] |
|
depth = image_raw.shape[2] |
|
downscale = min(rows / 96., cols / 96.) |
|
image_raw = skimage.transform.pyramid_reduce(image_raw, downscale) |
|
image_raw *= 255. |
|
image_raw = image_raw.astype("uint8") |
|
rows = image_raw.shape[0] |
|
cols = image_raw.shape[1] |
|
depth = image_raw.shape[2] |
|
image_raw = image_raw.tostring() |
|
example = tf.train.Example( |
|
features=tf.train.Features( |
|
feature={ |
|
"height": _int64_feature(rows), |
|
"width": _int64_feature(cols), |
|
"depth": _int64_feature(depth), |
|
"image_raw": _bytes_feature(image_raw) |
|
} |
|
) |
|
) |
|
writer.write(example.SerializeToString()) |
|
if example_idx % n_examples_per_file == (n_examples_per_file - 1): |
|
writer.close() |
|
writer.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|