|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Library of datasets for REBAR.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import random |
|
import os |
|
import scipy.io |
|
import numpy as np |
|
import cPickle as pickle |
|
import tensorflow as tf |
|
import config |
|
gfile = tf.gfile |
|
|
|
|
|
def load_data(hparams): |
|
|
|
if hparams.task in ['sbn', 'sp']: |
|
reader = read_MNIST |
|
elif hparams.task == 'omni': |
|
reader = read_omniglot |
|
x_train, x_valid, x_test = reader(binarize=not hparams.dynamic_b) |
|
|
|
return x_train, x_valid, x_test |
|
|
|
def read_MNIST(binarize=False): |
|
"""Reads in MNIST images. |
|
|
|
Args: |
|
binarize: whether to use the fixed binarization |
|
|
|
Returns: |
|
x_train: 50k training images |
|
x_valid: 10k validation images |
|
x_test: 10k test images |
|
|
|
""" |
|
with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_BINARIZED), 'r') as f: |
|
(x_train, _), (x_valid, _), (x_test, _) = pickle.load(f) |
|
|
|
if not binarize: |
|
with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_FLOAT), 'r') as f: |
|
x_train = np.load(f).reshape(-1, 784) |
|
|
|
return x_train, x_valid, x_test |
|
|
|
def read_omniglot(binarize=False): |
|
"""Reads in Omniglot images. |
|
|
|
Args: |
|
binarize: whether to use the fixed binarization |
|
|
|
Returns: |
|
x_train: training images |
|
x_valid: validation images |
|
x_test: test images |
|
|
|
""" |
|
n_validation=1345 |
|
|
|
def reshape_data(data): |
|
return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran') |
|
|
|
omni_raw = scipy.io.loadmat(os.path.join(config.DATA_DIR, config.OMNIGLOT)) |
|
|
|
train_data = reshape_data(omni_raw['data'].T.astype('float32')) |
|
test_data = reshape_data(omni_raw['testdata'].T.astype('float32')) |
|
|
|
|
|
if binarize: |
|
np.random.seed(5) |
|
train_data = (np.random.rand(*train_data.shape) < train_data).astype(float) |
|
test_data = (np.random.rand(*test_data.shape) < test_data).astype(float) |
|
|
|
shuffle_seed = 123 |
|
permutation = np.random.RandomState(seed=shuffle_seed).permutation(train_data.shape[0]) |
|
train_data = train_data[permutation] |
|
|
|
x_train = train_data[:-n_validation] |
|
x_valid = train_data[-n_validation:] |
|
x_test = test_data |
|
|
|
return x_train, x_valid, x_test |
|
|
|
|