|
"""Model for sentiment analysis. |
|
|
|
The model makes use of concatenation of two CNN layers with |
|
different kernel sizes. |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import tensorflow as tf |
|
|
|
|
|
class CNN(tf.keras.models.Model): |
|
"""CNN for sentimental analysis.""" |
|
|
|
def __init__(self, emb_dim, num_words, sentence_length, hid_dim, |
|
class_dim, dropout_rate): |
|
"""Initialize CNN model. |
|
|
|
Args: |
|
emb_dim: The dimension of the Embedding layer. |
|
num_words: The number of the most frequent tokens |
|
to be used from the corpus. |
|
sentence_length: The number of words in each sentence. |
|
Longer sentences get cut, shorter ones padded. |
|
hid_dim: The dimension of the Embedding layer. |
|
class_dim: The number of the CNN layer filters. |
|
dropout_rate: The portion of kept value in the Dropout layer. |
|
Returns: |
|
tf.keras.models.Model: A Keras model. |
|
""" |
|
|
|
input_layer = tf.keras.layers.Input(shape=(sentence_length,), dtype=tf.int32) |
|
|
|
layer = tf.keras.layers.Embedding(num_words, output_dim=emb_dim)(input_layer) |
|
|
|
layer_conv3 = tf.keras.layers.Conv1D(hid_dim, 3, activation="relu")(layer) |
|
layer_conv3 = tf.keras.layers.GlobalMaxPooling1D()(layer_conv3) |
|
|
|
layer_conv4 = tf.keras.layers.Conv1D(hid_dim, 2, activation="relu")(layer) |
|
layer_conv4 = tf.keras.layers.GlobalMaxPooling1D()(layer_conv4) |
|
|
|
layer = tf.keras.layers.concatenate([layer_conv4, layer_conv3], axis=1) |
|
layer = tf.keras.layers.BatchNormalization()(layer) |
|
layer = tf.keras.layers.Dropout(dropout_rate)(layer) |
|
|
|
output = tf.keras.layers.Dense(class_dim, activation="softmax")(layer) |
|
|
|
super(CNN, self).__init__(inputs=[input_layer], outputs=output) |
|
|