# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A Classification head layer which is common used with sequence encoders.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import tensorflow as tf from official.modeling import tf_utils class ClassificationHead(tf.keras.layers.Layer): """Pooling head for sentence-level classification tasks.""" def __init__(self, inner_dim, num_classes, cls_token_idx=0, activation="tanh", dropout_rate=0.0, initializer="glorot_uniform", **kwargs): """Initializes the `ClassificationHead`. Args: inner_dim: The dimensionality of inner projection layer. num_classes: Number of output classes. cls_token_idx: The index inside the sequence to pool. activation: Dense layer activation. dropout_rate: Dropout probability. initializer: Initializer for dense layer kernels. **kwargs: Keyword arguments. """ super(ClassificationHead, self).__init__(**kwargs) self.dropout_rate = dropout_rate self.inner_dim = inner_dim self.num_classes = num_classes self.activation = tf_utils.get_activation(activation) self.initializer = tf.keras.initializers.get(initializer) self.cls_token_idx = cls_token_idx self.dense = tf.keras.layers.Dense( units=inner_dim, activation=self.activation, kernel_initializer=self.initializer, name="pooler_dense") self.dropout = tf.keras.layers.Dropout(rate=self.dropout_rate) self.out_proj = tf.keras.layers.Dense( units=num_classes, kernel_initializer=self.initializer, name="logits") def call(self, features): x = features[:, self.cls_token_idx, :] # take token. x = self.dense(x) x = self.dropout(x) x = self.out_proj(x) return x def get_config(self): config = { "dropout_rate": self.dropout_rate, "num_classes": self.num_classes, "inner_dim": self.inner_dim, "activation": tf.keras.activations.serialize(self.activation), "initializer": tf.keras.initializers.serialize(self.initializer), } config.update(super(ClassificationHead, self).get_config()) return config @classmethod def from_config(cls, config, custom_objects=None): return cls(**config) @property def checkpoint_items(self): return {self.dense.name: self.dense}