# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Anchor box and labeler definition.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import tensorflow as tf from official.vision.detection.utils.object_detection import argmax_matcher from official.vision.detection.utils.object_detection import balanced_positive_negative_sampler from official.vision.detection.utils.object_detection import box_list from official.vision.detection.utils.object_detection import faster_rcnn_box_coder from official.vision.detection.utils.object_detection import region_similarity_calculator from official.vision.detection.utils.object_detection import target_assigner class Anchor(object): """Anchor class for anchor-based object detectors.""" def __init__(self, min_level, max_level, num_scales, aspect_ratios, anchor_size, image_size): """Constructs multiscale anchors. Args: min_level: integer number of minimum level of the output feature pyramid. max_level: integer number of maximum level of the output feature pyramid. num_scales: integer number representing intermediate scales added on each level. For instances, num_scales=2 adds one additional intermediate anchor scales [2^0, 2^0.5] on each level. aspect_ratios: list of float numbers representing the aspect raito anchors added on each level. The number indicates the ratio of width to height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each scale level. anchor_size: float number representing the scale of size of the base anchor to the feature stride 2^level. image_size: a list of integer numbers or Tensors representing [height, width] of the input image size.The image_size should be divided by the largest feature stride 2^max_level. """ self.min_level = min_level self.max_level = max_level self.num_scales = num_scales self.aspect_ratios = aspect_ratios self.anchor_size = anchor_size self.image_size = image_size self.boxes = self._generate_boxes() def _generate_boxes(self): """Generates multiscale anchor boxes. Returns: a Tensor of shape [N, 4], represneting anchor boxes of all levels concatenated together. """ boxes_all = [] for level in range(self.min_level, self.max_level + 1): boxes_l = [] for scale in range(self.num_scales): for aspect_ratio in self.aspect_ratios: stride = 2 ** level intermidate_scale = 2 ** (scale / float(self.num_scales)) base_anchor_size = self.anchor_size * stride * intermidate_scale aspect_x = aspect_ratio ** 0.5 aspect_y = aspect_ratio ** -0.5 half_anchor_size_x = base_anchor_size * aspect_x / 2.0 half_anchor_size_y = base_anchor_size * aspect_y / 2.0 x = tf.range(stride / 2, self.image_size[1], stride) y = tf.range(stride / 2, self.image_size[0], stride) xv, yv = tf.meshgrid(x, y) xv = tf.cast(tf.reshape(xv, [-1]), dtype=tf.float32) yv = tf.cast(tf.reshape(yv, [-1]), dtype=tf.float32) # Tensor shape Nx4. boxes = tf.stack([yv - half_anchor_size_y, xv - half_anchor_size_x, yv + half_anchor_size_y, xv + half_anchor_size_x], axis=1) boxes_l.append(boxes) # Concat anchors on the same level to tensor shape NxAx4. boxes_l = tf.stack(boxes_l, axis=1) boxes_l = tf.reshape(boxes_l, [-1, 4]) boxes_all.append(boxes_l) return tf.concat(boxes_all, axis=0) def unpack_labels(self, labels): """Unpacks an array of labels into multiscales labels.""" unpacked_labels = collections.OrderedDict() count = 0 for level in range(self.min_level, self.max_level + 1): feat_size_y = tf.cast(self.image_size[0] / 2 ** level, tf.int32) feat_size_x = tf.cast(self.image_size[1] / 2 ** level, tf.int32) steps = feat_size_y * feat_size_x * self.anchors_per_location unpacked_labels[level] = tf.reshape( labels[count:count + steps], [feat_size_y, feat_size_x, -1]) count += steps return unpacked_labels @property def anchors_per_location(self): return self.num_scales * len(self.aspect_ratios) @property def multilevel_boxes(self): return self.unpack_labels(self.boxes) class AnchorLabeler(object): """Labeler for dense object detector.""" def __init__(self, anchor, match_threshold=0.5, unmatched_threshold=0.5): """Constructs anchor labeler to assign labels to anchors. Args: anchor: an instance of class Anchors. match_threshold: a float number between 0 and 1 representing the lower-bound threshold to assign positive labels for anchors. An anchor with a score over the threshold is labeled positive. unmatched_threshold: a float number between 0 and 1 representing the upper-bound threshold to assign negative labels for anchors. An anchor with a score below the threshold is labeled negative. """ similarity_calc = region_similarity_calculator.IouSimilarity() matcher = argmax_matcher.ArgMaxMatcher( match_threshold, unmatched_threshold=unmatched_threshold, negatives_lower_than_unmatched=True, force_match_for_each_row=True) box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder() self._target_assigner = target_assigner.TargetAssigner( similarity_calc, matcher, box_coder) self._anchor = anchor self._match_threshold = match_threshold self._unmatched_threshold = unmatched_threshold def label_anchors(self, gt_boxes, gt_labels): """Labels anchors with ground truth inputs. Args: gt_boxes: A float tensor with shape [N, 4] representing groundtruth boxes. For each row, it stores [y0, x0, y1, x1] for four corners of a box. gt_labels: A integer tensor with shape [N, 1] representing groundtruth classes. Returns: cls_targets_dict: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, num_anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. box_targets_dict: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, num_anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. num_positives: scalar tensor storing number of positives in an image. """ gt_box_list = box_list.BoxList(gt_boxes) anchor_box_list = box_list.BoxList(self._anchor.boxes) # The cls_weights, box_weights are not used. cls_targets, _, box_targets, _, matches = self._target_assigner.assign( anchor_box_list, gt_box_list, gt_labels) # Labels definition in matches.match_results: # (1) match_results[i]>=0, meaning that column i is matched with row # match_results[i]. # (2) match_results[i]=-1, meaning that column i is not matched. # (3) match_results[i]=-2, meaning that column i is ignored. match_results = tf.expand_dims(matches.match_results, axis=1) cls_targets = tf.cast(cls_targets, tf.int32) cls_targets = tf.where( tf.equal(match_results, -1), -tf.ones_like(cls_targets), cls_targets) cls_targets = tf.where( tf.equal(match_results, -2), -2 * tf.ones_like(cls_targets), cls_targets) # Unpacks labels into multi-level representations. cls_targets_dict = self._anchor.unpack_labels(cls_targets) box_targets_dict = self._anchor.unpack_labels(box_targets) num_positives = tf.reduce_sum( input_tensor=tf.cast(tf.greater(matches.match_results, -1), tf.float32)) return cls_targets_dict, box_targets_dict, num_positives class RpnAnchorLabeler(AnchorLabeler): """Labeler for Region Proposal Network.""" def __init__(self, anchor, match_threshold=0.7, unmatched_threshold=0.3, rpn_batch_size_per_im=256, rpn_fg_fraction=0.5): AnchorLabeler.__init__(self, anchor, match_threshold=0.7, unmatched_threshold=0.3) self._rpn_batch_size_per_im = rpn_batch_size_per_im self._rpn_fg_fraction = rpn_fg_fraction def _get_rpn_samples(self, match_results): """Computes anchor labels. This function performs subsampling for foreground (fg) and background (bg) anchors. Args: match_results: A integer tensor with shape [N] representing the matching results of anchors. (1) match_results[i]>=0, meaning that column i is matched with row match_results[i]. (2) match_results[i]=-1, meaning that column i is not matched. (3) match_results[i]=-2, meaning that column i is ignored. Returns: score_targets: a integer tensor with the a shape of [N]. (1) score_targets[i]=1, the anchor is a positive sample. (2) score_targets[i]=0, negative. (3) score_targets[i]=-1, the anchor is don't care (ignore). """ sampler = ( balanced_positive_negative_sampler.BalancedPositiveNegativeSampler( positive_fraction=self._rpn_fg_fraction, is_static=False)) # indicator includes both positive and negative labels. # labels includes only positives labels. # positives = indicator & labels. # negatives = indicator & !labels. # ignore = !indicator. indicator = tf.greater(match_results, -2) labels = tf.greater(match_results, -1) samples = sampler.subsample( indicator, self._rpn_batch_size_per_im, labels) positive_labels = tf.where( tf.logical_and(samples, labels), tf.constant(2, dtype=tf.int32, shape=match_results.shape), tf.constant(0, dtype=tf.int32, shape=match_results.shape)) negative_labels = tf.where( tf.logical_and(samples, tf.logical_not(labels)), tf.constant(1, dtype=tf.int32, shape=match_results.shape), tf.constant(0, dtype=tf.int32, shape=match_results.shape)) ignore_labels = tf.fill(match_results.shape, -1) return (ignore_labels + positive_labels + negative_labels, positive_labels, negative_labels) def label_anchors(self, gt_boxes, gt_labels): """Labels anchors with ground truth inputs. Args: gt_boxes: A float tensor with shape [N, 4] representing groundtruth boxes. For each row, it stores [y0, x0, y1, x1] for four corners of a box. gt_labels: A integer tensor with shape [N, 1] representing groundtruth classes. Returns: score_targets_dict: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, num_anchors]. The height_l and width_l represent the dimension of class logits at l-th level. box_targets_dict: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, num_anchors * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. """ gt_box_list = box_list.BoxList(gt_boxes) anchor_box_list = box_list.BoxList(self._anchor.boxes) # cls_targets, cls_weights, box_weights are not used. _, _, box_targets, _, matches = self._target_assigner.assign( anchor_box_list, gt_box_list, gt_labels) # score_targets contains the subsampled positive and negative anchors. score_targets, _, _ = self._get_rpn_samples(matches.match_results) # Unpacks labels. score_targets_dict = self._anchor.unpack_labels(score_targets) box_targets_dict = self._anchor.unpack_labels(box_targets) return score_targets_dict, box_targets_dict