# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for BERT configurations and models instantiation.""" import tensorflow as tf from official.nlp.configs import bert from official.nlp.configs import encoders class BertModelsTest(tf.test.TestCase): def test_network_invocation(self): config = bert.BertPretrainerConfig( encoder=encoders.TransformerEncoderConfig(vocab_size=10, num_layers=1)) _ = bert.instantiate_bertpretrainer_from_cfg(config) # Invokes with classification heads. config = bert.BertPretrainerConfig( encoder=encoders.TransformerEncoderConfig(vocab_size=10, num_layers=1), cls_heads=[ bert.ClsHeadConfig( inner_dim=10, num_classes=2, name="next_sentence") ]) _ = bert.instantiate_bertpretrainer_from_cfg(config) with self.assertRaises(ValueError): config = bert.BertPretrainerConfig( encoder=encoders.TransformerEncoderConfig( vocab_size=10, num_layers=1), cls_heads=[ bert.ClsHeadConfig( inner_dim=10, num_classes=2, name="next_sentence"), bert.ClsHeadConfig( inner_dim=10, num_classes=2, name="next_sentence") ]) _ = bert.instantiate_bertpretrainer_from_cfg(config) def test_checkpoint_items(self): config = bert.BertPretrainerConfig( encoder=encoders.TransformerEncoderConfig(vocab_size=10, num_layers=1), cls_heads=[ bert.ClsHeadConfig( inner_dim=10, num_classes=2, name="next_sentence") ]) encoder = bert.instantiate_bertpretrainer_from_cfg(config) self.assertSameElements(encoder.checkpoint_items.keys(), ["encoder", "next_sentence.pooler_dense"]) if __name__ == "__main__": tf.test.main()