# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for official.nlp.nhnet.trainer.""" import os from absl import flags from absl.testing import parameterized import tensorflow as tf # pylint: disable=g-direct-tensorflow-import from tensorflow.python.distribute import combinations from tensorflow.python.distribute import strategy_combinations # pylint: enable=g-direct-tensorflow-import from official.nlp.nhnet import trainer from official.nlp.nhnet import utils FLAGS = flags.FLAGS trainer.define_flags() def all_strategy_combinations(): return combinations.combine( distribution=[ strategy_combinations.one_device_strategy, strategy_combinations.one_device_strategy_gpu, strategy_combinations.mirrored_strategy_with_gpu_and_cpu, strategy_combinations.tpu_strategy, ], mode="eager", ) def get_trivial_data(config) -> tf.data.Dataset: """Gets trivial data in the ImageNet size.""" batch_size, num_docs = 2, len(config.passage_list), len_passage = config.len_passage len_title = config.len_title def generate_data(_) -> tf.data.Dataset: fake_ids = tf.zeros((num_docs, len_passage), dtype=tf.int32) title = tf.zeros((len_title), dtype=tf.int32) return dict( input_ids=fake_ids, input_mask=fake_ids, segment_ids=fake_ids, target_ids=title) dataset = tf.data.Dataset.range(1) dataset = dataset.repeat() dataset = dataset.map( generate_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.prefetch(buffer_size=1).batch(batch_size) return dataset class TrainerTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(TrainerTest, self).setUp() self._config = utils.get_test_params() self._config.override( { "vocab_size": 49911, "max_position_embeddings": 200, "len_title": 15, "len_passage": 20, "beam_size": 5, "alpha": 0.6, "learning_rate": 0.0, "learning_rate_warmup_steps": 0, "multi_channel_cross_attention": True, "passage_list": ["a", "b"], }, is_strict=False) @combinations.generate(all_strategy_combinations()) def test_train(self, distribution): FLAGS.train_steps = 10 FLAGS.checkpoint_interval = 5 FLAGS.model_dir = self.get_temp_dir() FLAGS.model_type = "nhnet" stats = trainer.train(self._config, distribution, get_trivial_data(self._config)) self.assertIn("training_loss", stats) self.assertLen( tf.io.gfile.glob(os.path.join(FLAGS.model_dir, "ckpt*.index")), 2) if __name__ == "__main__": tf.test.main()