# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Script to pre-process classification data into tfrecords.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import os from absl import app from absl import flags from absl import logging import numpy as np import tensorflow as tf import sentencepiece as spm from official.nlp.xlnet import classifier_utils from official.nlp.xlnet import preprocess_utils flags.DEFINE_bool( "overwrite_data", default=False, help="If False, will use cached data if available.") flags.DEFINE_string("output_dir", default="", help="Output dir for TF records.") flags.DEFINE_string( "spiece_model_file", default="", help="Sentence Piece model path.") flags.DEFINE_string("data_dir", default="", help="Directory for input data.") # task specific flags.DEFINE_string("eval_split", default="dev", help="could be dev or test") flags.DEFINE_string("task_name", default=None, help="Task name") flags.DEFINE_integer( "eval_batch_size", default=64, help="batch size for evaluation") flags.DEFINE_integer("max_seq_length", default=128, help="Max sequence length") flags.DEFINE_integer( "num_passes", default=1, help="Num passes for processing training data. " "This is use to batch data without loss for TPUs.") flags.DEFINE_bool("uncased", default=False, help="Use uncased.") flags.DEFINE_bool( "is_regression", default=False, help="Whether it's a regression task.") flags.DEFINE_bool( "use_bert_format", default=False, help="Whether to use BERT format to arrange input data.") FLAGS = flags.FLAGS class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.io.gfile.GFile(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: # pylint: disable=g-explicit-length-test if len(line) == 0: continue lines.append(line) return lines class GLUEProcessor(DataProcessor): """GLUEProcessor.""" def __init__(self): self.train_file = "train.tsv" self.dev_file = "dev.tsv" self.test_file = "test.tsv" self.label_column = None self.text_a_column = None self.text_b_column = None self.contains_header = True self.test_text_a_column = None self.test_text_b_column = None self.test_contains_header = True def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, self.train_file)), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, self.dev_file)), "dev") def get_test_examples(self, data_dir): """See base class.""" if self.test_text_a_column is None: self.test_text_a_column = self.text_a_column if self.test_text_b_column is None: self.test_text_b_column = self.text_b_column return self._create_examples( self._read_tsv(os.path.join(data_dir, self.test_file)), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0 and self.contains_header and set_type != "test": continue if i == 0 and self.test_contains_header and set_type == "test": continue guid = "%s-%s" % (set_type, i) a_column = ( self.text_a_column if set_type != "test" else self.test_text_a_column) b_column = ( self.text_b_column if set_type != "test" else self.test_text_b_column) # there are some incomplete lines in QNLI if len(line) <= a_column: logging.warning("Incomplete line, ignored.") continue text_a = line[a_column] if b_column is not None: if len(line) <= b_column: logging.warning("Incomplete line, ignored.") continue text_b = line[b_column] else: text_b = None if set_type == "test": label = self.get_labels()[0] else: if len(line) <= self.label_column: logging.warning("Incomplete line, ignored.") continue label = line[self.label_column] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class Yelp5Processor(DataProcessor): """Yelp5Processor.""" def get_train_examples(self, data_dir): return self._create_examples(os.path.join(data_dir, "train.csv")) def get_dev_examples(self, data_dir): return self._create_examples(os.path.join(data_dir, "test.csv")) def get_labels(self): """See base class.""" return ["1", "2", "3", "4", "5"] def _create_examples(self, input_file): """Creates examples for the training and dev sets.""" examples = [] with tf.io.gfile.GFile(input_file) as f: reader = csv.reader(f) for i, line in enumerate(reader): label = line[0] text_a = line[1].replace('""', '"').replace('\\"', '"') examples.append( InputExample(guid=str(i), text_a=text_a, text_b=None, label=label)) return examples class ImdbProcessor(DataProcessor): """ImdbProcessor.""" def get_labels(self): return ["neg", "pos"] def get_train_examples(self, data_dir): return self._create_examples(os.path.join(data_dir, "train")) def get_dev_examples(self, data_dir): return self._create_examples(os.path.join(data_dir, "test")) def _create_examples(self, data_dir): """Creates examples.""" examples = [] for label in ["neg", "pos"]: cur_dir = os.path.join(data_dir, label) for filename in tf.io.gfile.listdir(cur_dir): if not filename.endswith("txt"): continue if len(examples) % 1000 == 0: logging.info("Loading dev example %d", len(examples)) path = os.path.join(cur_dir, filename) with tf.io.gfile.GFile(path) as f: text = f.read().strip().replace("
", " ") examples.append( InputExample( guid="unused_id", text_a=text, text_b=None, label=label)) return examples class MnliMatchedProcessor(GLUEProcessor): """MnliMatchedProcessor.""" def __init__(self): super(MnliMatchedProcessor, self).__init__() self.dev_file = "dev_matched.tsv" self.test_file = "test_matched.tsv" self.label_column = -1 self.text_a_column = 8 self.text_b_column = 9 def get_labels(self): return ["contradiction", "entailment", "neutral"] class MnliMismatchedProcessor(MnliMatchedProcessor): def __init__(self): super(MnliMismatchedProcessor, self).__init__() self.dev_file = "dev_mismatched.tsv" self.test_file = "test_mismatched.tsv" class StsbProcessor(GLUEProcessor): """StsbProcessor.""" def __init__(self): super(StsbProcessor, self).__init__() self.label_column = 9 self.text_a_column = 7 self.text_b_column = 8 def get_labels(self): return [0.0] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0 and self.contains_header and set_type != "test": continue if i == 0 and self.test_contains_header and set_type == "test": continue guid = "%s-%s" % (set_type, i) a_column = ( self.text_a_column if set_type != "test" else self.test_text_a_column) b_column = ( self.text_b_column if set_type != "test" else self.test_text_b_column) # there are some incomplete lines in QNLI if len(line) <= a_column: logging.warning("Incomplete line, ignored.") continue text_a = line[a_column] if b_column is not None: if len(line) <= b_column: logging.warning("Incomplete line, ignored.") continue text_b = line[b_column] else: text_b = None if set_type == "test": label = self.get_labels()[0] else: if len(line) <= self.label_column: logging.warning("Incomplete line, ignored.") continue label = float(line[self.label_column]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def file_based_convert_examples_to_features(examples, label_list, max_seq_length, tokenize_fn, output_file, num_passes=1): """Convert a set of `InputExample`s to a TFRecord file.""" # do not create duplicated records if tf.io.gfile.exists(output_file) and not FLAGS.overwrite_data: logging.info("Do not overwrite tfrecord %s exists.", output_file) return logging.info("Create new tfrecord %s.", output_file) writer = tf.io.TFRecordWriter(output_file) examples *= num_passes for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logging.info("Writing example %d of %d", ex_index, len(examples)) feature = classifier_utils.convert_single_example(ex_index, example, label_list, max_seq_length, tokenize_fn, FLAGS.use_bert_format) def create_int_feature(values): f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return f def create_float_feature(values): f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) return f features = collections.OrderedDict() features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_float_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) if label_list is not None: features["label_ids"] = create_int_feature([feature.label_id]) else: features["label_ids"] = create_float_feature([float(feature.label_id)]) features["is_real_example"] = create_int_feature( [int(feature.is_real_example)]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close() def main(_): logging.set_verbosity(logging.INFO) processors = { "mnli_matched": MnliMatchedProcessor, "mnli_mismatched": MnliMismatchedProcessor, "sts-b": StsbProcessor, "imdb": ImdbProcessor, "yelp5": Yelp5Processor } task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels() if not FLAGS.is_regression else None sp = spm.SentencePieceProcessor() sp.Load(FLAGS.spiece_model_file) def tokenize_fn(text): text = preprocess_utils.preprocess_text(text, lower=FLAGS.uncased) return preprocess_utils.encode_ids(sp, text) spm_basename = os.path.basename(FLAGS.spiece_model_file) train_file_base = "{}.len-{}.train.tf_record".format(spm_basename, FLAGS.max_seq_length) train_file = os.path.join(FLAGS.output_dir, train_file_base) logging.info("Use tfrecord file %s", train_file) train_examples = processor.get_train_examples(FLAGS.data_dir) np.random.shuffle(train_examples) logging.info("Num of train samples: %d", len(train_examples)) file_based_convert_examples_to_features(train_examples, label_list, FLAGS.max_seq_length, tokenize_fn, train_file, FLAGS.num_passes) if FLAGS.eval_split == "dev": eval_examples = processor.get_dev_examples(FLAGS.data_dir) else: eval_examples = processor.get_test_examples(FLAGS.data_dir) logging.info("Num of eval samples: %d", len(eval_examples)) # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. These do NOT count towards the metric (all tf.metrics # support a per-instance weight, and these get a weight of 0.0). # # Modified in XL: We also adopt the same mechanism for GPUs. while len(eval_examples) % FLAGS.eval_batch_size != 0: eval_examples.append(classifier_utils.PaddingInputExample()) eval_file_base = "{}.len-{}.{}.eval.tf_record".format(spm_basename, FLAGS.max_seq_length, FLAGS.eval_split) eval_file = os.path.join(FLAGS.output_dir, eval_file_base) file_based_convert_examples_to_features(eval_examples, label_list, FLAGS.max_seq_length, tokenize_fn, eval_file) if __name__ == "__main__": app.run(main)