# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import numpy as np import tensorflow as tf from official.nlp.xlnet import xlnet_modeling class PositionalEmbeddingLayerTest(tf.test.TestCase): def test_positional_embedding(self): """A low-dimensional example is tested. With len(pos_seq)=2 and d_model=4: pos_seq = [[1.], [0.]] inv_freq = [1., 0.01] pos_seq x inv_freq = [[1, 0.01], [0., 0.]] pos_emb = [[sin(1.), sin(0.01), cos(1.), cos(0.01)], [sin(0.), sin(0.), cos(0.), cos(0.)]] = [[0.84147096, 0.00999983, 0.54030228, 0.99994999], [0., 0., 1., 1.]] """ target = np.array([[[0.84147096, 0.00999983, 0.54030228, 0.99994999]], [[0., 0., 1., 1.]]]) d_model = 4 pos_seq = tf.range(1, -1, -1.0) # [1., 0.] pos_emb_layer = xlnet_modeling.PositionalEmbedding(d_model) pos_emb = pos_emb_layer(pos_seq, batch_size=None).numpy().astype(float) logging.info(pos_emb) self.assertAllClose(pos_emb, target) if __name__ == "__main__": tf.test.main()