# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the metrics module.""" import contextlib import numpy as np import tensorflow as tf import metrics class AccuracyTest(tf.test.TestCase): def setUp(self): tf.test.TestCase.setUp(self) self.rng = np.random.RandomState([11, 23, 50]) self.num_char_classes = 3 self.batch_size = 4 self.seq_length = 5 self.rej_char = 42 @contextlib.contextmanager def initialized_session(self): """Wrapper for test session context manager with required initialization. Yields: A session object that should be used as a context manager. """ with self.cached_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) yield sess def _fake_labels(self): return self.rng.randint( low=0, high=self.num_char_classes, size=(self.batch_size, self.seq_length), dtype='int32') def _incorrect_copy(self, values, bad_indexes): incorrect = np.copy(values) incorrect[bad_indexes] = values[bad_indexes] + 1 return incorrect def test_sequence_accuracy_identical_samples(self): labels_tf = tf.convert_to_tensor(self._fake_labels()) accuracy_tf = metrics.sequence_accuracy(labels_tf, labels_tf, self.rej_char) with self.initialized_session() as sess: accuracy_np = sess.run(accuracy_tf) self.assertAlmostEqual(accuracy_np, 1.0) def test_sequence_accuracy_one_char_difference(self): ground_truth_np = self._fake_labels() ground_truth_tf = tf.convert_to_tensor(ground_truth_np) prediction_tf = tf.convert_to_tensor( self._incorrect_copy(ground_truth_np, bad_indexes=((0, 0)))) accuracy_tf = metrics.sequence_accuracy(prediction_tf, ground_truth_tf, self.rej_char) with self.initialized_session() as sess: accuracy_np = sess.run(accuracy_tf) # 1 of 4 sequences is incorrect. self.assertAlmostEqual(accuracy_np, 1.0 - 1.0 / self.batch_size) def test_char_accuracy_one_char_difference_with_padding(self): ground_truth_np = self._fake_labels() ground_truth_tf = tf.convert_to_tensor(ground_truth_np) prediction_tf = tf.convert_to_tensor( self._incorrect_copy(ground_truth_np, bad_indexes=((0, 0)))) accuracy_tf = metrics.char_accuracy(prediction_tf, ground_truth_tf, self.rej_char) with self.initialized_session() as sess: accuracy_np = sess.run(accuracy_tf) chars_count = self.seq_length * self.batch_size self.assertAlmostEqual(accuracy_np, 1.0 - 1.0 / chars_count) if __name__ == '__main__': tf.test.main()