import tensorflow as tf class VariationalAutoencoder(object): def __init__(self, n_input, n_hidden, optimizer = tf.train.AdamOptimizer()): self.n_input = n_input self.n_hidden = n_hidden network_weights = self._initialize_weights() self.weights = network_weights # model self.x = tf.placeholder(tf.float32, [None, self.n_input]) self.z_mean = tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1']) self.z_log_sigma_sq = tf.add(tf.matmul(self.x, self.weights['log_sigma_w1']), self.weights['log_sigma_b1']) # sample from gaussian distribution eps = tf.random_normal(tf.stack([tf.shape(self.x)[0], self.n_hidden]), 0, 1, dtype = tf.float32) self.z = tf.add(self.z_mean, tf.multiply(tf.sqrt(tf.exp(self.z_log_sigma_sq)), eps)) self.reconstruction = tf.add(tf.matmul(self.z, self.weights['w2']), self.weights['b2']) # cost reconstr_loss = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0), 1) latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq - tf.square(self.z_mean) - tf.exp(self.z_log_sigma_sq), 1) self.cost = tf.reduce_mean(reconstr_loss + latent_loss) self.optimizer = optimizer.minimize(self.cost) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) def _initialize_weights(self): all_weights = dict() all_weights['w1'] = tf.get_variable("w1", shape=[self.n_input, self.n_hidden], initializer=tf.contrib.layers.xavier_initializer()) all_weights['log_sigma_w1'] = tf.get_variable("log_sigma_w1", shape=[self.n_input, self.n_hidden], initializer=tf.contrib.layers.xavier_initializer()) all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32)) all_weights['log_sigma_b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32)) all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32)) all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32)) return all_weights def partial_fit(self, X): cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X}) return cost def calc_total_cost(self, X): return self.sess.run(self.cost, feed_dict = {self.x: X}) def transform(self, X): return self.sess.run(self.z_mean, feed_dict={self.x: X}) def generate(self, hidden = None): if hidden is None: hidden = self.sess.run(tf.random_normal([1, self.n_hidden])) return self.sess.run(self.reconstruction, feed_dict={self.z: hidden}) def reconstruct(self, X): return self.sess.run(self.reconstruction, feed_dict={self.x: X}) def getWeights(self): return self.sess.run(self.weights['w1']) def getBiases(self): return self.sess.run(self.weights['b1'])