# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for building the model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf def project(input_layers, size, name='projection'): return tf.add_n([tf.layers.dense(layer, size, name=name + '_' + str(i)) for i, layer in enumerate(input_layers)]) def lstm_cell(cell_size, keep_prob, num_proj): return tf.contrib.rnn.DropoutWrapper( tf.contrib.rnn.LSTMCell(cell_size, num_proj=min(cell_size, num_proj)), output_keep_prob=keep_prob) def multi_lstm_cell(cell_sizes, keep_prob, num_proj): return tf.contrib.rnn.MultiRNNCell([lstm_cell(cell_size, keep_prob, num_proj) for cell_size in cell_sizes]) def masked_ce_loss(logits, labels, mask, sparse=False, roll_direction=0): if roll_direction != 0: labels = _roll(labels, roll_direction, sparse) mask *= _roll(mask, roll_direction, True) ce = ((tf.nn.sparse_softmax_cross_entropy_with_logits if sparse else tf.nn.softmax_cross_entropy_with_logits_v2) (logits=logits, labels=labels)) return tf.reduce_sum(mask * ce) / tf.to_float(tf.reduce_sum(mask)) def _roll(arr, direction, sparse=False): if sparse: return tf.concat([arr[:, direction:], arr[:, :direction]], axis=1) return tf.concat([arr[:, direction:, :], arr[:, :direction, :]], axis=1)