#!/bin/bash # Script to run deep speech model to achieve the MLPerf target (WER = 0.23) # Step 1: download the LibriSpeech dataset. echo "Data downloading..." python data/download.py ## After data downloading, the dataset directories are: train_clean_100="/tmp/librispeech_data/train-clean-100/LibriSpeech/train-clean-100.csv" train_clean_360="/tmp/librispeech_data/train-clean-360/LibriSpeech/train-clean-360.csv" train_other_500="/tmp/librispeech_data/train-other-500/LibriSpeech/train-other-500.csv" dev_clean="/tmp/librispeech_data/dev-clean/LibriSpeech/dev-clean.csv" dev_other="/tmp/librispeech_data/dev-other/LibriSpeech/dev-other.csv" test_clean="/tmp/librispeech_data/test-clean/LibriSpeech/test-clean.csv" test_other="/tmp/librispeech_data/test-other/LibriSpeech/test-other.csv" # Step 2: generate train dataset and evaluation dataset echo "Data preprocessing..." train_file="/tmp/librispeech_data/train_dataset.csv" eval_file="/tmp/librispeech_data/eval_dataset.csv" head -1 $train_clean_100 > $train_file for filename in $train_clean_100 $train_clean_360 $train_other_500 do sed 1d $filename >> $train_file done head -1 $dev_clean > $eval_file for filename in $dev_clean $dev_other do sed 1d $filename >> $eval_file done # Step 3: filter out the audio files that exceed max time duration. final_train_file="/tmp/librispeech_data/final_train_dataset.csv" final_eval_file="/tmp/librispeech_data/final_eval_dataset.csv" MAX_AUDIO_LEN=27.0 awk -v maxlen="$MAX_AUDIO_LEN" 'BEGIN{FS="\t";} NR==1{print $0} NR>1{cmd="soxi -D "$1""; cmd|getline x; if(x<=maxlen) {print $0}; close(cmd);}' $train_file > $final_train_file awk -v maxlen="$MAX_AUDIO_LEN" 'BEGIN{FS="\t";} NR==1{print $0} NR>1{cmd="soxi -D "$1""; cmd|getline x; if(x<=maxlen) {print $0}; close(cmd);}' $eval_file > $final_eval_file # Step 4: run the training and evaluation loop in background, and save the running info to a log file echo "Model training and evaluation..." start=`date +%s` log_file=log_`date +%Y-%m-%d` nohup python deep_speech.py --train_data_dir=$final_train_file --eval_data_dir=$final_eval_file --num_gpus=-1 --wer_threshold=0.23 --seed=1 >$log_file 2>&1& end=`date +%s` runtime=$((end-start)) echo "Model training time is" $runtime "seconds."